On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from~$L_p$, $p>1$
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 87-109
Voir la notice de l'article provenant de la source Math-Net.Ru
The precise geometry is found of measurable sets in $N$-dimensional Euclidean space on which generalized localization almost everywhere holds for multiple Fourier series which are rectangularly summable.
Bibliography: 14 titles.
@article{SM_1984_49_1_a6,
author = {I. L. Bloshanskii},
title = {On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric {Fourier} series of functions from~$L_p$, $p>1$},
journal = {Sbornik. Mathematics},
pages = {87--109},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/}
}
TY - JOUR AU - I. L. Bloshanskii TI - On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from~$L_p$, $p>1$ JO - Sbornik. Mathematics PY - 1984 SP - 87 EP - 109 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/ LA - en ID - SM_1984_49_1_a6 ER -
%0 Journal Article %A I. L. Bloshanskii %T On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from~$L_p$, $p>1$ %J Sbornik. Mathematics %D 1984 %P 87-109 %V 49 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/ %G en %F SM_1984_49_1_a6
I. L. Bloshanskii. On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from~$L_p$, $p>1$. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 87-109. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/