On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from $L_p$, $p>1$
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 87-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The precise geometry is found of measurable sets in $N$-dimensional Euclidean space on which generalized localization almost everywhere holds for multiple Fourier series which are rectangularly summable. Bibliography: 14 titles.
@article{SM_1984_49_1_a6,
     author = {I. L. Bloshanskii},
     title = {On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric {Fourier} series of functions from~$L_p$, $p>1$},
     journal = {Sbornik. Mathematics},
     pages = {87--109},
     year = {1984},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from $L_p$, $p>1$
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 87
EP  - 109
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/
LA  - en
ID  - SM_1984_49_1_a6
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from $L_p$, $p>1$
%J Sbornik. Mathematics
%D 1984
%P 87-109
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/
%G en
%F SM_1984_49_1_a6
I. L. Bloshanskii. On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from $L_p$, $p>1$. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 87-109. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a6/

[1] Bloshanskii I. L., “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinyzh ryadov Fure”, DAN SSSR, 242:1 (1978), 11–13 | MR

[2] Bloshanskii I. L., “Generalized localization and convergence tests for double trigonometric Fourier series of functions from $L_p$, $p > l$”, Analysis Math., 7:1 (1981), 3–36 | DOI | MR

[3] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[4] Hunt R., On the convergence of Fourier series, Ortogonal Expansions and their Continuous Analogues (Proc. Conf. Edwardsville Ill., 1967), Southern Illinouis Univ. Press (Carbondale Ill., 1968), 235–255 | MR

[5] Kolmogoroff A., “Une serie de Fourier-Lebesque divergente presque partout”, Found Math., 4 (1923), 324–328 | Zbl

[6] Marcinkiewicz I., “On the convergence of Fourier series, I”, London Math. Soc., 10 (1935), 264–268 | DOI | Zbl

[7] Bari H. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[8] Menshov D. E., “O ryadakh Fure ot summiruemykh funktsii”, Trudy Mosk. matem. ob-va, 1 (1951), 5–38

[9] Bloshanskii I. L., “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168

[10] Tonelli L., Serie trigonometriche, Bologna, 1928

[11] Zigmund A., Trigonometricheskie ryady, 2, Mir, M., 1965 | MR

[12] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[13] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl

[14] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl