Bounded solutions, almost periodic in time, of a class of nonlinear evolution equations
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 73-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An evolution equation of the form $u'+L(t)u+A(t)u=f$ is considered, where $L(t)$ is a linear maximally monotone (unbounded) operator and $A(t)$ a nonlinear bounded monotone operator that satisfies a coerciveness condition. Existence theorems are established for bounded and almost periodic (in the senses of Stepanov, Bohr, and Besicovitch) solutions. The theory is then applied to symmetric hyperbolic systems and to some nonlinear Schrödinger-type equations. Bibliography: 19 titles.
@article{SM_1984_49_1_a5,
     author = {A. A. Pankov},
     title = {Bounded solutions, almost periodic in time, of a~class of nonlinear evolution equations},
     journal = {Sbornik. Mathematics},
     pages = {73--86},
     year = {1984},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/}
}
TY  - JOUR
AU  - A. A. Pankov
TI  - Bounded solutions, almost periodic in time, of a class of nonlinear evolution equations
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 73
EP  - 86
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/
LA  - en
ID  - SM_1984_49_1_a5
ER  - 
%0 Journal Article
%A A. A. Pankov
%T Bounded solutions, almost periodic in time, of a class of nonlinear evolution equations
%J Sbornik. Mathematics
%D 1984
%P 73-86
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/
%G en
%F SM_1984_49_1_a5
A. A. Pankov. Bounded solutions, almost periodic in time, of a class of nonlinear evolution equations. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/

[1] Agranovich M. S., “Granichnye zadachi dlya sistem psevdodifferentsialnykh operatorov 1-go poryadka”, UMN, 24:1 (1969), 61–125 | MR | Zbl

[2] Zhikov V. V., Levitan B. M., “Teoriya Favara”, UMN, 32:2 (1977), 123–171 | MR | Zbl

[3] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti-periodicheskie kolebaniya, Nauka, M., 1970 | MR

[4] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953

[5] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[6] Lione Zh-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[7] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[8] Pankov A. A., “Ogranichennye i pochti-periodicheskie resheniya evolyutsionnykh variatsionnykh neravenstv”, Matem. sb., 108 (152) (1979), 551–556 | MR

[9] Pankov A. A., “K teorii pochti-periodicheskikh psevdodifferentsialnykh operatorov”, Ukr. matem. zh., 33:5 (1981), 615–619 | MR | Zbl

[10] Pankov A. A., “Ogranichennost i pochti-periodichnost po vremeni reshenii evolyutsionnykh variatsionnykh neravenstv”, Izv. AN SSSR. Seriya matem., 46:2 (1982), 314–346 | MR | Zbl

[11] Pankov A. A., “Ob ogranichennykh i pochti-periodicheskikh resheniyakh nekotorykh nelineinykh evolyutsionnykh uravnenii”, UMN, 37:2 (1982), 223–224 | MR | Zbl

[12] Khartman R., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[13] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, 1, Nauka, M., 1975

[14] Shubin M. A., “Pochti-periodicheskie funktsii i differentsialnye operatory s chastnymi proizvodnymi”, UMN, 33:2 (1978), 3–47 | MR | Zbl

[15] Amerio L., Prouse G., Almost periodic functions and functional equations, Van Nostrand, New York, 1971 | MR | Zbl

[16] Bardos C., Brézis H., “Sur une classe de problèmes d'évolution non linéaires”, J. Diff. Equat., 6 (1969), 345–394 | DOI | MR | Zbl

[17] Fink A. M., Almost periodic differentials equations, v. 377, Lect. Notes Math., Springer, Berlin, 1974 | MR

[18] Friedrichs K., “Symmetric positive systems of differential equations”, Comm. Pure Appl. Math., 11 (1958), 333–418 | DOI | MR | Zbl

[19] Lax P., Phillips R., “Local boundary conditions for dissipative symmetric operators”, Comm. Pure Appl. Math., 13 (1960), 427–455 | DOI | MR | Zbl