Bounded solutions, almost periodic in time, of a~class of nonlinear evolution equations
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 73-86

Voir la notice de l'article provenant de la source Math-Net.Ru

An evolution equation of the form $u'+L(t)u+A(t)u=f$ is considered, where $L(t)$ is a linear maximally monotone (unbounded) operator and $A(t)$ a nonlinear bounded monotone operator that satisfies a coerciveness condition. Existence theorems are established for bounded and almost periodic (in the senses of Stepanov, Bohr, and Besicovitch) solutions. The theory is then applied to symmetric hyperbolic systems and to some nonlinear Schrödinger-type equations. Bibliography: 19 titles.
@article{SM_1984_49_1_a5,
     author = {A. A. Pankov},
     title = {Bounded solutions, almost periodic in time, of a~class of nonlinear evolution equations},
     journal = {Sbornik. Mathematics},
     pages = {73--86},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/}
}
TY  - JOUR
AU  - A. A. Pankov
TI  - Bounded solutions, almost periodic in time, of a~class of nonlinear evolution equations
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 73
EP  - 86
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/
LA  - en
ID  - SM_1984_49_1_a5
ER  - 
%0 Journal Article
%A A. A. Pankov
%T Bounded solutions, almost periodic in time, of a~class of nonlinear evolution equations
%J Sbornik. Mathematics
%D 1984
%P 73-86
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/
%G en
%F SM_1984_49_1_a5
A. A. Pankov. Bounded solutions, almost periodic in time, of a~class of nonlinear evolution equations. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a5/