Infinitesimal bendings of a~class of multidimensional surfaces with boundary
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 49-60
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Infinitesimal bendings are considered for a $2k$-dimensional ($k\geqslant1$) surface of class $C^2$ with boundary in $3k$-dimensional Euclidean space in the case when the surface is star-shaped with respect to some $(k-1)$-dimensional plane or projects in a one-to-one manner on some $2k$-dimensional plane. Tests are established for the rigidity of such surfaces under boundary conditions of sliding.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1984_49_1_a3,
     author = {P. E. Markov},
     title = {Infinitesimal bendings of a~class of multidimensional surfaces with boundary},
     journal = {Sbornik. Mathematics},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a3/}
}
                      
                      
                    P. E. Markov. Infinitesimal bendings of a~class of multidimensional surfaces with boundary. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 49-60. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a3/
