On Jordan algebras that are solvable of index~2
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 41-48

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $\Phi$ is a commutative associative ring containing $1/2$. It is shown that any solvable Jordan algebra of index 2 over $\Phi$ is special. Solvable Jordan algebras of index 3 need not be special. Bibliography: 6 titles.
@article{SM_1984_49_1_a2,
     author = {S. R. Sverchkov},
     title = {On {Jordan} algebras that are solvable of index~2},
     journal = {Sbornik. Mathematics},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/}
}
TY  - JOUR
AU  - S. R. Sverchkov
TI  - On Jordan algebras that are solvable of index~2
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 41
EP  - 48
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/
LA  - en
ID  - SM_1984_49_1_a2
ER  - 
%0 Journal Article
%A S. R. Sverchkov
%T On Jordan algebras that are solvable of index~2
%J Sbornik. Mathematics
%D 1984
%P 41-48
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/
%G en
%F SM_1984_49_1_a2
S. R. Sverchkov. On Jordan algebras that are solvable of index~2. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/