On Jordan algebras that are solvable of index~2
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 41-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose $\Phi$ is a commutative associative ring containing $1/2$. It is shown that any solvable Jordan algebra of index 2 over $\Phi$ is special. Solvable Jordan algebras of index 3 need not be special.
Bibliography: 6 titles.
@article{SM_1984_49_1_a2,
author = {S. R. Sverchkov},
title = {On {Jordan} algebras that are solvable of index~2},
journal = {Sbornik. Mathematics},
pages = {41--48},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/}
}
S. R. Sverchkov. On Jordan algebras that are solvable of index~2. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/