On Jordan algebras that are solvable of index 2
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 41-48
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose $\Phi$ is a commutative associative ring containing $1/2$. It is shown that any solvable Jordan algebra of index 2 over $\Phi$ is special. Solvable Jordan algebras of index 3 need not be special. Bibliography: 6 titles.
@article{SM_1984_49_1_a2,
author = {S. R. Sverchkov},
title = {On {Jordan} algebras that are solvable of index~2},
journal = {Sbornik. Mathematics},
pages = {41--48},
year = {1984},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/}
}
S. R. Sverchkov. On Jordan algebras that are solvable of index 2. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a2/
[1] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl
[2] Kon P., Universalnaya algebra, Mir, M., 1968 | MR
[3] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR
[4] Slinko A. M., “O spetsialnykh mnogoobraziyakh iordanovykh algebr”, Matem. zametki, 26:3 (1979), 337–344 | MR
[5] Shirshov A. I., “O spetsialnykh $J$-koltsakh”, Matem. sb., 38 (80) (1956), 149–166 | Zbl
[6] Albert A. A., “A note on the exceptional Jordan algebra”, Proc. Nat. Acad. Sci. USA, 36 (1950), 372–374 | DOI | MR | Zbl