On some generalizations of bases in Banach spaces
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 269-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article considers pseudobases and quasibases in Banach spaces, as introduced by Gelbaum. A geometric characterization of pseudobases is established. It is proved that pseudobases are stable. It is shown that pseudobases and quasibases in the $L^p$-spaces do not, in general, have an interpolation property with respect to these spaces which is inherent to bases. Namely, an example is constructed of a system of functions that is an unconditional quasibasis in $L^2(0,\,1)$ and $L^q(0,\,1)$ ($q\in(1,\,2)$ fixed) and at the same time is not a pseudobasis in any $L^p(0,\,1)$ with $p\in(q,\,2)$ for any rearrangement of it. Bibliography: 10 titles.
@article{SM_1984_49_1_a16,
     author = {A. N. Slepchenko},
     title = {On some generalizations of bases in {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {269--281},
     year = {1984},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a16/}
}
TY  - JOUR
AU  - A. N. Slepchenko
TI  - On some generalizations of bases in Banach spaces
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 269
EP  - 281
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a16/
LA  - en
ID  - SM_1984_49_1_a16
ER  - 
%0 Journal Article
%A A. N. Slepchenko
%T On some generalizations of bases in Banach spaces
%J Sbornik. Mathematics
%D 1984
%P 269-281
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a16/
%G en
%F SM_1984_49_1_a16
A. N. Slepchenko. On some generalizations of bases in Banach spaces. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 269-281. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a16/

[1] Singer I., Bases in Banach spaces II, Springer, Berlin–Heidelberg–New York, 1981 | MR | Zbl

[2] Gelbaum B. R., “Notes on Banach spaces and bases”, An. Acad. Brasil. Ci., 30 (1958), 29–36 | MR | Zbl

[3] Kachmazh S, Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[4] Krein M. G., Milman M. A., Rutman M. A., “Ob odnom svoistve bazisa v prostranstve Banakha”, Zap. matem. o-va (Kharkov), 16 (1940), 106–108 | MR

[5] Ulyanov P. L., “Nekotorye voprosy teorii ortogonalnykh i biortogonalnykh ryadov”, Izv. AN AzSSR. Seriya fiz.-tekhn. i matem., 1965, no. 6, 11–13 | MR

[6] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[7] Pelczynski A., “Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis”, Studia Math., 40 (1971), 239–243 | MR | Zbl

[8] Johnson W. B., Rosenthal H. P., Zippin M., “On bases, finite dimentional decompositions and weaker structures in Banach spaces”, Isr. J. Math., 9 (1971), 489–506 | MR

[9] Slepchenko A. N., “Ob ortogonalnykh bazisakh v $L$”, Matem. zametki, 6 (1969), 749–758 | Zbl

[10] Ryazanov B. V., Slepchenko A. N., “Ortogonalnye bazisy v $L^p$”, Izv. AN SSSR. Seriya matem., 34 (1970), 1159–1172 | MR | Zbl