Integral representations and continuous projectors in certain spaces of harmonic functions
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 255-267
Voir la notice de l'article provenant de la source Math-Net.Ru
The classes $A_\alpha^p$ of harmonic functions on the unit ball of $\mathbf R^n$ are studied. An integral representation theorem is obtained for the class $A_\alpha^p$, and theorems on the existence of a bounded projection from the space $L_\alpha^p$ to $A_\alpha^p$ are proved.
Bibliography: 14 titles.
@article{SM_1984_49_1_a15,
author = {A. \`E. Dzhrbashyan},
title = {Integral representations and continuous projectors in certain spaces of harmonic functions},
journal = {Sbornik. Mathematics},
pages = {255--267},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a15/}
}
TY - JOUR AU - A. È. Dzhrbashyan TI - Integral representations and continuous projectors in certain spaces of harmonic functions JO - Sbornik. Mathematics PY - 1984 SP - 255 EP - 267 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a15/ LA - en ID - SM_1984_49_1_a15 ER -
A. È. Dzhrbashyan. Integral representations and continuous projectors in certain spaces of harmonic functions. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 255-267. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a15/