Integral representations and continuous projectors in certain spaces of harmonic functions
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 255-267

Voir la notice de l'article provenant de la source Math-Net.Ru

The classes $A_\alpha^p$ of harmonic functions on the unit ball of $\mathbf R^n$ are studied. An integral representation theorem is obtained for the class $A_\alpha^p$, and theorems on the existence of a bounded projection from the space $L_\alpha^p$ to $A_\alpha^p$ are proved. Bibliography: 14 titles.
@article{SM_1984_49_1_a15,
     author = {A. \`E. Dzhrbashyan},
     title = {Integral representations and continuous projectors in certain spaces of harmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {255--267},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a15/}
}
TY  - JOUR
AU  - A. È. Dzhrbashyan
TI  - Integral representations and continuous projectors in certain spaces of harmonic functions
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 255
EP  - 267
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a15/
LA  - en
ID  - SM_1984_49_1_a15
ER  - 
%0 Journal Article
%A A. È. Dzhrbashyan
%T Integral representations and continuous projectors in certain spaces of harmonic functions
%J Sbornik. Mathematics
%D 1984
%P 255-267
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a15/
%G en
%F SM_1984_49_1_a15
A. È. Dzhrbashyan. Integral representations and continuous projectors in certain spaces of harmonic functions. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 255-267. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a15/