Limit theorems for Markov processes in a rapidly changing random environment
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 239-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Markov processes are considered in a rapidly changing random environment; the asymptotic behavior of the distribution for the number of nonappearing states is investigated. A limit theorem is obtained which enables us to approximate the distribution of the number of particles of a birth-and-death branching process in a rapidly changing environment by the limit distributions of an ordinary birth-and-death branching process. Bibliography: 12 titles.
@article{SM_1984_49_1_a14,
     author = {A. V. Chistyakov},
     title = {Limit theorems for {Markov} processes in a~rapidly changing random environment},
     journal = {Sbornik. Mathematics},
     pages = {239--254},
     year = {1984},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a14/}
}
TY  - JOUR
AU  - A. V. Chistyakov
TI  - Limit theorems for Markov processes in a rapidly changing random environment
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 239
EP  - 254
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a14/
LA  - en
ID  - SM_1984_49_1_a14
ER  - 
%0 Journal Article
%A A. V. Chistyakov
%T Limit theorems for Markov processes in a rapidly changing random environment
%J Sbornik. Mathematics
%D 1984
%P 239-254
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a14/
%G en
%F SM_1984_49_1_a14
A. V. Chistyakov. Limit theorems for Markov processes in a rapidly changing random environment. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 239-254. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a14/

[1] Bezhaeva 3. I., “Slabaya skhodimost matrits perekhodnykh veroyatnostei dlya uslovnykh tsepei Markova”, Teoriya veroyatn., XXVII:1 (1982), 57–66 | MR | Zbl

[2] Sityuk V. N., Issledovaniya po analizu nadezhnosti slozhnykh sistem, podverzhennykh nestatsionarnoi nagruzke, Avtoref. dis. ... kand. fiz.-matem. nauk., Kiev, 1977, 16 pp.

[3] Chistyakov A. V., “O skhodimosti konechnomernykh raspredelenii markovskogo protsessa, upravlyaemogo bystrym ergodicheskim protsessom”, Matem. zametki, 28:3 (1980), 443–450 | MR | Zbl

[4] Chistyakov A. V., “O skhodimosti konechnomernykh raspredelenii medlennoi komponenty odnoi sistemy obsluzhivaniya”, Matem. zametki, 32:2 (1982), 249–259 | MR | Zbl

[5] Zubkov A. M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem. sb., 109 (151) (1979), 491–532 | MR | Zbl

[6] Zubkov A. M., Approksimatsii zavisimykh sluchainykh velichin nezavisimymi i ikh primeneniya, Dis. na soiskanie uch. st. dokt. fiz. matem. nauk, MIAN, M., 1981

[7] Zubkov A. M., “Tsepi Markova, blizkie k posledovatelnosti nezavisimykh ispytanii”, Matem. zametki, 25:3 (1979), 465–474 | MR | Zbl

[8] Zubkov A. M., “Yavnye otsenki v zakone bolshikh chisel dlya posledovatelnostei s peremeshivaniem”, DAN SSSR, 261:4 (1981), 786–787 | MR | Zbl

[9] Rozanov Yu. A., Sluchainye protsessy, Nauka, M., 1979 | MR | Zbl

[10] Dub Dzh. L., Veroyatnostnye protsessy, Il, M., 1956

[11] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976 | MR | Zbl

[12] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR