Integrable Euler equations associated with filtrations of Lie algebras
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 229-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In semisimple Lie algebras a new construction is determined for symmetric operators such that the Euler equations reduce to chains of linear dynamical systems. The construction is associated with filtrations of Lie algebras and leads in a number of cases to completely integrable Euler equations. An analogous construction associated with filtrations of diffeomorphism groups is determined for Lie algebras of vector fields on manifolds. Constructions of Euler equations having sets of additional integrals in involution are found for the classical case. Bibliography: 10 titles.
@article{SM_1984_49_1_a13,
     author = {O. I. Bogoyavlenskii},
     title = {Integrable {Euler} equations associated with filtrations of {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {229--238},
     year = {1984},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a13/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Integrable Euler equations associated with filtrations of Lie algebras
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 229
EP  - 238
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a13/
LA  - en
ID  - SM_1984_49_1_a13
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Integrable Euler equations associated with filtrations of Lie algebras
%J Sbornik. Mathematics
%D 1984
%P 229-238
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a13/
%G en
%F SM_1984_49_1_a13
O. I. Bogoyavlenskii. Integrable Euler equations associated with filtrations of Lie algebras. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 229-238. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a13/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[2] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz, 10:4 (1976), 93–94 | MR | Zbl

[3] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funkts. analiz, 8:3 (1974), 54–66 | MR | Zbl

[4] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR

[5] Mischenko A. S, Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Seriya matem., 42 (1978), 396–415 | MR | Zbl

[6] by Трофимов В. В. “Uravneniya Eilera na borelevskikh podalgebrakh poluprostykh algebr Li”, Izv. AN SSSR. Seriya matem, 43 (1979), 714–732 | Zbl

[7] Pevtsova T. A., “Odin sposob postroeniya kommutativnoi algebry integralov na algebrakh Li”, VII Vsesoyuznaya konferentsiya po sovremennym problemam geometrii, Minsk, 1979, 149

[8] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstvaleniya, Nauka, M., 1970 | MR | Zbl

[9] Burbaki N., Gruppy i algebry Li /Perevod s frants. pod red. A. I. Kostrikina, Mir, M., 1972 | MR | Zbl

[10] Mescheryakov M. V., “Integrirovanie uravnenii geodezicheskikh levoinvariantnykh metrik na prostykh algebrakh Li s pomoschyu spetsialnykh funktsii”, Matem. sb., 117(159) (1982), 481–493 | Zbl