On degenerate nonlinear elliptic equations.~II
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 207-228

Voir la notice de l'article provenant de la source Math-Net.Ru

Dirichlet problems for degenerate nonlinear elliptic equations of Bellman type $\inf_p(L(p)u+f(p))=0$ are studied, where $L(p)$ is a linear elliptic operator of second order. Under certain conditions on the coefficients of $L(p)$, it is shown that this problem is solvable in the class of functions with bounded second derivatives. Bibliography: 15 titles.
@article{SM_1984_49_1_a12,
     author = {N. V. Krylov},
     title = {On degenerate nonlinear elliptic {equations.~II}},
     journal = {Sbornik. Mathematics},
     pages = {207--228},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a12/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On degenerate nonlinear elliptic equations.~II
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 207
EP  - 228
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a12/
LA  - en
ID  - SM_1984_49_1_a12
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On degenerate nonlinear elliptic equations.~II
%J Sbornik. Mathematics
%D 1984
%P 207-228
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a12/
%G en
%F SM_1984_49_1_a12
N. V. Krylov. On degenerate nonlinear elliptic equations.~II. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 207-228. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a12/