On degenerate nonlinear elliptic equations.~II
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 207-228
Voir la notice de l'article provenant de la source Math-Net.Ru
Dirichlet problems for degenerate nonlinear elliptic equations of Bellman type $\inf_p(L(p)u+f(p))=0$ are studied, where $L(p)$ is a linear elliptic operator of second order. Under certain conditions on the coefficients of $L(p)$, it is shown that this problem is solvable in the class of functions with bounded second derivatives.
Bibliography: 15 titles.
@article{SM_1984_49_1_a12, author = {N. V. Krylov}, title = {On degenerate nonlinear elliptic {equations.~II}}, journal = {Sbornik. Mathematics}, pages = {207--228}, publisher = {mathdoc}, volume = {49}, number = {1}, year = {1984}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a12/} }
N. V. Krylov. On degenerate nonlinear elliptic equations.~II. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 207-228. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a12/