An example of a~chain prime ring with nilpotent elements
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 437-444
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the author constructs a chain ring $R$ (i.e. a ring in which the right and left ideals are linearly ordered by inclusion) with the following properties: 1) $R$ is a prime ring; 2) the Jacobson radical $J(R)$ of $R$ is a simple chain ring (without identity); 3) each element of $J(R)$ is a right and left zero divisor. This example gives an answer to one of Brung's questions. In addition, the ring $J(R)$ is totally singular, i.e. it coincides with its right (left) singular ideal.
The construction is based on a theorem that permits one to assign a chain ring to a right ordered group whose group ring can be imbedded in a division ring.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1984_48_2_a9,
     author = {N. I. Dubrovin},
     title = {An example of a~chain prime ring with nilpotent elements},
     journal = {Sbornik. Mathematics},
     pages = {437--444},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a9/}
}
                      
                      
                    N. I. Dubrovin. An example of a~chain prime ring with nilpotent elements. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 437-444. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a9/
