Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 391-421
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the Cauchy problem for the Korteweg–de Vries equation $u_t+u_{xxx}=uu_x$, $x\in\mathbf R^1$, $0$, with initial condition $u(0,x)=u_0(x)$ is considered in nonlocal formulation. In the case of an arbitrary initial function $u_0(x)\in L^2(\mathbf R^1)$ the existence of a generalized $L^2$-solution is proved, and its smoothness is studied for $t>0$. A class of well-posed solutions is distinguished among the generalized solutions under consideration, and within this class theorems concerning existence, uniqueness and continuous dependence of solutions on initial conditions are proved.
Bibliography: 28 titles.
@article{SM_1984_48_2_a7,
author = {S. N. Kruzhkov and A. V. Faminskii},
title = {Generalized solutions of the {Cauchy} problem for the {Korteweg-de} {Vries} equation},
journal = {Sbornik. Mathematics},
pages = {391--421},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a7/}
}
TY - JOUR AU - S. N. Kruzhkov AU - A. V. Faminskii TI - Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation JO - Sbornik. Mathematics PY - 1984 SP - 391 EP - 421 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_48_2_a7/ LA - en ID - SM_1984_48_2_a7 ER -
S. N. Kruzhkov; A. V. Faminskii. Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 391-421. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a7/