The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 381-389

Voir la notice de l'article provenant de la source Math-Net.Ru

The author continues the study of the inverse kinematic problem of diffraction from polycrystalline objects in Sobolev spaces of automorphic functions on the three-dimensional rotation group. An effective intrinsic description is obtained for the orthogonal complement of the subspace of common zeros of a finite family of diffraction operators. Based on this description, a projection method is proposed for constructing an $\mathscr H_s$-optimal solution of the diffraction problem with incomplete data. Bibliography: 7 titles.
@article{SM_1984_48_2_a6,
     author = {V. P. Yashnikov},
     title = {The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects},
     journal = {Sbornik. Mathematics},
     pages = {381--389},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a6/}
}
TY  - JOUR
AU  - V. P. Yashnikov
TI  - The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 381
EP  - 389
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_2_a6/
LA  - en
ID  - SM_1984_48_2_a6
ER  - 
%0 Journal Article
%A V. P. Yashnikov
%T The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects
%J Sbornik. Mathematics
%D 1984
%P 381-389
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_48_2_a6/
%G en
%F SM_1984_48_2_a6
V. P. Yashnikov. The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 381-389. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a6/