The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 381-389
Cet article a éte moissonné depuis la source Math-Net.Ru
The author continues the study of the inverse kinematic problem of diffraction from polycrystalline objects in Sobolev spaces of automorphic functions on the three-dimensional rotation group. An effective intrinsic description is obtained for the orthogonal complement of the subspace of common zeros of a finite family of diffraction operators. Based on this description, a projection method is proposed for constructing an $\mathscr H_s$-optimal solution of the diffraction problem with incomplete data. Bibliography: 7 titles.
@article{SM_1984_48_2_a6,
author = {V. P. Yashnikov},
title = {The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects},
journal = {Sbornik. Mathematics},
pages = {381--389},
year = {1984},
volume = {48},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a6/}
}
TY - JOUR AU - V. P. Yashnikov TI - The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects JO - Sbornik. Mathematics PY - 1984 SP - 381 EP - 389 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1984_48_2_a6/ LA - en ID - SM_1984_48_2_a6 ER -
V. P. Yashnikov. The structure of $\mathscr H_s$-optimal solutions of the inverse kinematic problem of diffraction from polycrystalline objects. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 381-389. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a6/