Models for the complex representations of the groups~$\operatorname{GL}(n,q)$
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 365-379

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper consists in the construction of a model of the full linear group over a finite field, i.e. its representations such that each irreducible representation occurs as a component precisely once. The series of representations thus constructed has the well-known Gel'fand–Graev representation as first term. Bibliography: 12 titles.
@article{SM_1984_48_2_a5,
     author = {A. A. Klyachko},
     title = {Models for the complex representations of the groups~$\operatorname{GL}(n,q)$},
     journal = {Sbornik. Mathematics},
     pages = {365--379},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a5/}
}
TY  - JOUR
AU  - A. A. Klyachko
TI  - Models for the complex representations of the groups~$\operatorname{GL}(n,q)$
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 365
EP  - 379
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_2_a5/
LA  - en
ID  - SM_1984_48_2_a5
ER  - 
%0 Journal Article
%A A. A. Klyachko
%T Models for the complex representations of the groups~$\operatorname{GL}(n,q)$
%J Sbornik. Mathematics
%D 1984
%P 365-379
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_48_2_a5/
%G en
%F SM_1984_48_2_a5
A. A. Klyachko. Models for the complex representations of the groups~$\operatorname{GL}(n,q)$. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 365-379. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a5/