Models for the complex representations of the groups~$\operatorname{GL}(n,q)$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 365-379
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of the paper consists in the construction of a model of the full linear group over a finite field, i.e. its representations such that each irreducible representation occurs as a component precisely once. The series of representations thus constructed has the well-known Gel'fand–Graev representation as first term.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1984_48_2_a5,
     author = {A. A. Klyachko},
     title = {Models for the complex representations of the groups~$\operatorname{GL}(n,q)$},
     journal = {Sbornik. Mathematics},
     pages = {365--379},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a5/}
}
                      
                      
                    A. A. Klyachko. Models for the complex representations of the groups~$\operatorname{GL}(n,q)$. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 365-379. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a5/
                  
                