Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 349-363
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper conditions are given for the spectrum in an eigenvalue problem of the form $$\lambda A(u)=B(u)$$ to be discrete, where $A$ and $B$ are operators that are odd-homogeneous of degree $p-1$ $(p\geqslant2)$, acting from a reflexive Banach space into the dual. It is proved that the eigenvalues vary monotonically as $A$ and $B$ vary in the normed linear space of homogeneous operators of degree $p-1$. Explicit formulas for the eigenvalues and functions are obtained for the case where $A$ and $B$ are the gradients of the norms in the spaces $W_p^1[\Omega_0]$ and $L_p[\Omega_0]$ ($\Omega_0$ is a parallelepiped in $E^m$). Using these formulas the author obtains estimates for the eigenvalues in homogeneous and asymptotically homogeneous problems with variable coefficients in the space $\overset{\circ}{W_p^1}[\Omega]$, where $\Omega$ is an arbitrary bounded domain in $E^m$.
Bibliography: 12 titles.
@article{SM_1984_48_2_a4,
author = {V. R. Kardashov},
title = {Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators},
journal = {Sbornik. Mathematics},
pages = {349--363},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a4/}
}
TY - JOUR AU - V. R. Kardashov TI - Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators JO - Sbornik. Mathematics PY - 1984 SP - 349 EP - 363 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_48_2_a4/ LA - en ID - SM_1984_48_2_a4 ER -
V. R. Kardashov. Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 349-363. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a4/