The Fourier series method for entire and meromorphic functions of completely regular growth.~III
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 327-338

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved on the asymptotic behavior of meromorphic functions of completely regular growth (as previously defined by the author) as $r\to\infty$ outside a set of zero linear density. For entire functions of completely regular growth a uniformity property is established, and some of its applications are presented. An upper bound for the number of deficient values (in the sense of R. Nevanlinna) of such functions is also obtained. Bibliography: 11 titles.
@article{SM_1984_48_2_a2,
     author = {A. A. Kondratyuk},
     title = {The {Fourier} series method for entire and meromorphic functions of completely regular {growth.~III}},
     journal = {Sbornik. Mathematics},
     pages = {327--338},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a2/}
}
TY  - JOUR
AU  - A. A. Kondratyuk
TI  - The Fourier series method for entire and meromorphic functions of completely regular growth.~III
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 327
EP  - 338
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_2_a2/
LA  - en
ID  - SM_1984_48_2_a2
ER  - 
%0 Journal Article
%A A. A. Kondratyuk
%T The Fourier series method for entire and meromorphic functions of completely regular growth.~III
%J Sbornik. Mathematics
%D 1984
%P 327-338
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_48_2_a2/
%G en
%F SM_1984_48_2_a2
A. A. Kondratyuk. The Fourier series method for entire and meromorphic functions of completely regular growth.~III. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 327-338. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a2/