On convergence of subsequences of the $m$th row of a Padé table
Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 535-540
Cet article a éte moissonné depuis la source Math-Net.Ru
The question is considered of the existence of a subsequence of the $m$th row of the Padé table of a function $f$ that converges uniformly on compact subsets of the disk $D_m$: $|z| ($R_m$ the radius of $m$-meromorphy of $f$) which do not contain poles of this function. Bibliography: 8 titles.
@article{SM_1984_48_2_a15,
author = {V. I. Buslaev and A. A. Gonchar and S. P. Suetin},
title = {On convergence of subsequences of the $m$th row of {a~Pad\'e} table},
journal = {Sbornik. Mathematics},
pages = {535--540},
year = {1984},
volume = {48},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_2_a15/}
}
V. I. Buslaev; A. A. Gonchar; S. P. Suetin. On convergence of subsequences of the $m$th row of a Padé table. Sbornik. Mathematics, Tome 48 (1984) no. 2, pp. 535-540. http://geodesic.mathdoc.fr/item/SM_1984_48_2_a15/