Norms of random matrices and widths of finite-dimensional sets
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 173-182
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Precise orders are given for the Kolmogorov and linear widths of the unit ball of the space $l_p^m$ in the metric of $l_q^m$ for $q\infty$. The determination of the upper estimates is based on approximation by random objects. This method goes back to Kashin (Izv. Akad. Nauk SSSR, Ser. Mat., 1977, vol. 41, p. 334–351). The corresponding lower estimates were obtained in a previous article of the author (Vestn. Leningr. Univ., 1981, № 13, p. 5–10).
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1984_48_1_a8,
     author = {E. D. Gluskin},
     title = {Norms of random matrices and widths of finite-dimensional sets},
     journal = {Sbornik. Mathematics},
     pages = {173--182},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a8/}
}
                      
                      
                    E. D. Gluskin. Norms of random matrices and widths of finite-dimensional sets. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 173-182. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a8/
