Norms of random matrices and widths of finite-dimensional sets
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 173-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Precise orders are given for the Kolmogorov and linear widths of the unit ball of the space $l_p^m$ in the metric of $l_q^m$ for $q<\infty$. The determination of the upper estimates is based on approximation by random objects. This method goes back to Kashin (Izv. Akad. Nauk SSSR, Ser. Mat., 1977, vol. 41, p. 334–351). The corresponding lower estimates were obtained in a previous article of the author (Vestn. Leningr. Univ., 1981, No 13, p. 5–10). Bibliography: 12 titles.
@article{SM_1984_48_1_a8,
     author = {E. D. Gluskin},
     title = {Norms of random matrices and widths of finite-dimensional sets},
     journal = {Sbornik. Mathematics},
     pages = {173--182},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a8/}
}
TY  - JOUR
AU  - E. D. Gluskin
TI  - Norms of random matrices and widths of finite-dimensional sets
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 173
EP  - 182
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a8/
LA  - en
ID  - SM_1984_48_1_a8
ER  - 
%0 Journal Article
%A E. D. Gluskin
%T Norms of random matrices and widths of finite-dimensional sets
%J Sbornik. Mathematics
%D 1984
%P 173-182
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a8/
%G en
%F SM_1984_48_1_a8
E. D. Gluskin. Norms of random matrices and widths of finite-dimensional sets. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 173-182. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a8/

[1] Stechkin S. B., “O nailuchshem priblizhenii zadannykh klassov funktsii lyubymi polinomami”, UMN, IX:1 (1954), 133–134

[2] Pietsch A., “$s$-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | MR | Zbl

[3] Stesin M. I., “Aleksandrovskie poperechniki konechnomernykh mnozhestv i klassov gladkikh funktsii”, DAN SSSR, 220:6 (1975), 1278–1281 | MR | Zbl

[4] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, XXIX:3 (1974), 161–178 | MR

[5] Kashin B. S., “O poperechnikakh oktaedrov”, UMN, XXX:4 (1975), 251–252

[6] Kashin B. S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Seriya matem., 41 (1977), 334–351 | Zbl

[7] Kashin B. S., “O nekotorykh svoistvakh matrits ogranichennykh operatorov iz prostranstva $l_2^n$ v $l_2^m$”, Izv. AN ArmSSR. Matematika, XV:5 (1980), 379–394 | MR

[8] Hölig K., “Approximationzahlen von Sobolev–Einbettungen”, Math. Ann., 242:3 (1979), 273–281 | DOI | MR

[9] Gluskin E. D., “O nekotorykh konechnomernykh zadachakh teorii poperechnikov”, Vestn. LGU, 1981, no. 13, 5–10 | MR | Zbl

[10] Mityagin B. S., “Sluchainye matritsy i podprostranstva”, Geometriya lineinykh prostranstv i teoriya operatorov, Yaroslavl, 1977, 175–202 | MR | Zbl

[11] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, XIV:2 (1959), 3–86 | MR

[12] Fiegel T., Lindenstrauss J., Milman V. D., “The dimension of almost spherical sections of convex bodies”, Acta math., 139 (1977), 53–94 | DOI | MR