The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 159-172

Voir la notice de l'article provenant de la source Math-Net.Ru

A set is called a selector of an equivalence relation defined on all the real numbers if it intersects each equivalence class of this relation in a singleton set. The following proposition is called the selector principle: each analytic equivalence relation on the set of all real numbers has an $A_2$-selector. It is proved that the selector principle is not equivalent to the existence of an $A_2$ well ordering of the continuum. This answers a question posed by Burgess. Equivalence is understood in the sense of equivalence in the standard Zermelo–Fraenkel set theory with the axiom of choice. Bibliography: 8 titles.
@article{SM_1984_48_1_a7,
     author = {B. L. Budinas},
     title = {The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum},
     journal = {Sbornik. Mathematics},
     pages = {159--172},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/}
}
TY  - JOUR
AU  - B. L. Budinas
TI  - The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 159
EP  - 172
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/
LA  - en
ID  - SM_1984_48_1_a7
ER  - 
%0 Journal Article
%A B. L. Budinas
%T The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum
%J Sbornik. Mathematics
%D 1984
%P 159-172
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/
%G en
%F SM_1984_48_1_a7
B. L. Budinas. The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/