The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 159-172
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A set is called a selector of an equivalence relation defined on all the real numbers if it intersects each equivalence class of this relation in a singleton set. The following proposition is called the selector principle: each analytic equivalence relation on the set of all real numbers has an $A_2$-selector. It is proved that the selector principle is not equivalent to the existence of an $A_2$ well ordering of the continuum. This answers a question posed by Burgess. Equivalence is understood in the sense of equivalence in the standard Zermelo–Fraenkel set theory with the axiom of choice.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1984_48_1_a7,
     author = {B. L. Budinas},
     title = {The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum},
     journal = {Sbornik. Mathematics},
     pages = {159--172},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/}
}
                      
                      
                    TY - JOUR AU - B. L. Budinas TI - The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum JO - Sbornik. Mathematics PY - 1984 SP - 159 EP - 172 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/ LA - en ID - SM_1984_48_1_a7 ER -
%0 Journal Article %A B. L. Budinas %T The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum %J Sbornik. Mathematics %D 1984 %P 159-172 %V 48 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/ %G en %F SM_1984_48_1_a7
B. L. Budinas. The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a7/
