The Cauchy problem with modified initial data for the generalized Euler--Poisson--Darboux equation
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 141-157
Voir la notice de l'article provenant de la source Math-Net.Ru
For the equation
$$
\varphi(y-\tau(x))\frac{\partial^2u}{\partial x\partial y}+a(x,y)\frac{\partial u}{\partial x}+b(x,y)\frac{\partial u}{\partial y}+c(x,y)u=f(x,y),
$$
where $\varphi(t)$ is an increasing function with $\varphi(0)=0$, consider the Cauchy problem in different formulations determined by specifying the initial data in various forms on the curve $y=\tau(x)$. It is proved that the problems considered are uniquely solvable.
Bibliography: 12 titles.
@article{SM_1984_48_1_a6,
author = {F. T. Baranovskii},
title = {The {Cauchy} problem with modified initial data for the generalized {Euler--Poisson--Darboux} equation},
journal = {Sbornik. Mathematics},
pages = {141--157},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a6/}
}
TY - JOUR AU - F. T. Baranovskii TI - The Cauchy problem with modified initial data for the generalized Euler--Poisson--Darboux equation JO - Sbornik. Mathematics PY - 1984 SP - 141 EP - 157 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a6/ LA - en ID - SM_1984_48_1_a6 ER -
F. T. Baranovskii. The Cauchy problem with modified initial data for the generalized Euler--Poisson--Darboux equation. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a6/