The Cauchy problem with modified initial data for the generalized Euler–Poisson–Darboux equation
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 141-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the equation $$ \varphi(y-\tau(x))\frac{\partial^2u}{\partial x\partial y}+a(x,y)\frac{\partial u}{\partial x}+b(x,y)\frac{\partial u}{\partial y}+c(x,y)u=f(x,y), $$ where $\varphi(t)$ is an increasing function with $\varphi(0)=0$, consider the Cauchy problem in different formulations determined by specifying the initial data in various forms on the curve $y=\tau(x)$. It is proved that the problems considered are uniquely solvable. Bibliography: 12 titles.
@article{SM_1984_48_1_a6,
     author = {F. T. Baranovskii},
     title = {The {Cauchy} problem with modified initial data for the generalized {Euler{\textendash}Poisson{\textendash}Darboux} equation},
     journal = {Sbornik. Mathematics},
     pages = {141--157},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a6/}
}
TY  - JOUR
AU  - F. T. Baranovskii
TI  - The Cauchy problem with modified initial data for the generalized Euler–Poisson–Darboux equation
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 141
EP  - 157
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a6/
LA  - en
ID  - SM_1984_48_1_a6
ER  - 
%0 Journal Article
%A F. T. Baranovskii
%T The Cauchy problem with modified initial data for the generalized Euler–Poisson–Darboux equation
%J Sbornik. Mathematics
%D 1984
%P 141-157
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a6/
%G en
%F SM_1984_48_1_a6
F. T. Baranovskii. The Cauchy problem with modified initial data for the generalized Euler–Poisson–Darboux equation. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a6/

[1] Bitsadze A. V., “K teorii odnogo klassa uravnenii smeshannogo tipa”, Nekotorye problemy matematiki i mekhaniki, Nauka, L., 1970, 112–119

[2] Bitsadze A. V., Nakhushev A. M., “K teorii vyrozhdayuschikhsya giperbolicheskikh uravnenii v mnogomernykh oblastyakh”, DAN SSSR, 204:6 (1972), 1289–1291 | Zbl

[3] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[4] Weinstein A., “The generalized radiation problem and the Euler–Poisson–Darboux equation”, Summa brasil. math., 3:7 (1955), 126–147 | MR

[5] Blum E. K., “The solutions of the Euler–Poisson–Darboux equation for negative values of the parameter”, Duke Math., 21:2 (1954), 257–270 | DOI | MR

[6] Tersenov S. A., “O singulyarnoi zadache Koshi”, DAN SSSR, 196:5 (1971), 1032–1035 | MR | Zbl

[7] Gavrilova N. V., Yurchuk N. I., “Zadacha Koshi dlya differentsialno-operatornykh uravnenii tipa Eilera–Puassona–Darbu”, Diff. uravneniya, 17:5 (1981), 789–795 | MR | Zbl

[8] Baranovskii F. T., “O zadache Koshi dlya giperbolicheskogo uravneniya vtorogo poryadka s osobennostyu v koeffitsiente”, UMN, 17:2 (1962), 167–174 | MR | Zbl

[9] Baranovskii F. T., “O zadache Koshi dlya giperbolicheskogo uravneniya vtorogo poryadka s osobennostyu v koeffitsiente (sluchai $1\alpha2$)”, Diff. uravneniya, 16:8 (1970), 1459–1466 | MR

[10] Baranovskii F. T., “Zadacha Koshi giperbolichnogo rivnyannya drugogo poryadku, scho silno virodzhuetsya”, DAN USSR, seriya A, 1971, no. 1, 11–16 | Zbl

[11] Protter M. H., “The Gauchy problem for a hyperbolic second order equation with data the parabolic line”, Canad. J. Math., 6:4 (1954), 542–553 | MR | Zbl

[12] Kurant R., Fridrikhs K., Levi G., “O raznostnykh uravneniyakh matematicheskoi fiziki”, UMN, 1941, no. 8, 125–160