Cohomology rings, linking forms and invariants of spin structures in three-dimensional manifolds
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 65-79

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions on a triple consisting of a sequence of graded rings, a bilinear form, and a function with values in $\mathbf Z/16$ are given which ensure that the triple consists of the cohomology rings, the linking form, and the Rokhlin function of some closed oriented three-dimensional manifold. Figures: 2. Bibliography: 24 titles.
@article{SM_1984_48_1_a3,
     author = {V. G. Turaev},
     title = {Cohomology rings, linking forms and invariants of spin structures in three-dimensional manifolds},
     journal = {Sbornik. Mathematics},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a3/}
}
TY  - JOUR
AU  - V. G. Turaev
TI  - Cohomology rings, linking forms and invariants of spin structures in three-dimensional manifolds
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 65
EP  - 79
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a3/
LA  - en
ID  - SM_1984_48_1_a3
ER  - 
%0 Journal Article
%A V. G. Turaev
%T Cohomology rings, linking forms and invariants of spin structures in three-dimensional manifolds
%J Sbornik. Mathematics
%D 1984
%P 65-79
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a3/
%G en
%F SM_1984_48_1_a3
V. G. Turaev. Cohomology rings, linking forms and invariants of spin structures in three-dimensional manifolds. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a3/