Exponential polynomials of least deviation from zero and optimal quadrature formulas
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 273-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain properties of polynomials of exponential functions of least deviation from zero in mean on a segment are established. The dependence of the norm of the extremal polynomial and its roots on the length of the segment is investigated first. On the basis of these properties optimality of equidistant nodes is established in the problem of the best quadrature formula for periodic classes which are prescribed by a constraint on the action of a linear differential operator with real eigenvalues. Formulas for determining the weights of the optimal quadrature formula and a relation for optimal error are presented. Bibliography: 12 titles.
@article{SM_1984_48_1_a15,
     author = {M. A. Chahkiev},
     title = {Exponential polynomials of least deviation from zero and optimal quadrature formulas},
     journal = {Sbornik. Mathematics},
     pages = {273--285},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a15/}
}
TY  - JOUR
AU  - M. A. Chahkiev
TI  - Exponential polynomials of least deviation from zero and optimal quadrature formulas
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 273
EP  - 285
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a15/
LA  - en
ID  - SM_1984_48_1_a15
ER  - 
%0 Journal Article
%A M. A. Chahkiev
%T Exponential polynomials of least deviation from zero and optimal quadrature formulas
%J Sbornik. Mathematics
%D 1984
%P 273-285
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a15/
%G en
%F SM_1984_48_1_a15
M. A. Chahkiev. Exponential polynomials of least deviation from zero and optimal quadrature formulas. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 273-285. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a15/

[1] Zolotarev G., Korkine A., “Sur un certain minimum”, Nuovelles annales de mathematiques., 2-e serie, 12 (1873), 337–355

[2] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[3] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[4] Nikolskii S. M., “K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami”, UMN, V:2 (36) (1950), 165–177 | MR

[5] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1979 | MR

[6] Busarova T. N., “Nailuchshie kvadraturnye formuly dlya odnogo klassa differentsiruemykh periodicheskikh funktsii”, Ukr. matem. zh., 25:3 (1973), 291–301 | MR | Zbl

[7] Motornyi V. P., “O nailuchshei kvadraturnoi formule vida $\sum_{k=1}^n p_k f(x_k)$ dlya nekotorykh klassov periodicheskikh differentsiruemykh funktsii”, DAN SSSR, 211:5 (1973), 1060–1062 | MR | Zbl

[8] Ligun A. A., “Tochnye neravenstva dlya splain-funktsii i nailuchshie kvadraturnye formuly dlya nekotorykh klassov funktsii”, Matem. zametki, 19:6 (1976), 913–926 | MR | Zbl

[9] Zhensykbaev A. A., “O nailuchshei kvadraturnoi formule na klasse $W^r L_p$”, DAN SSSR, 227:2 (1976), 277–279 | MR | Zbl

[10] Korneichuk N. P., Lushpai N. E., “Nailuchshie kvadraturnye formuly dlya klassov differentsiruemykh funktsii i kusochno-polinomialnoe priblizhenie”, Izv. AN SSSR. Seriya matem., 33 (1969), 1416–1437 | MR

[11] Lushpai N. E., “Nailuchshie kvadraturnye formuly na klassakh differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 6:4 (1969), 475–481 | MR | Zbl

[12] Oskolkov K. I., “Ob optimalnosti kvadraturnoi formuly s ravnootstoyaschimi uzlami na klassakh periodicheskikh funktsii”, DAN SSSR, 249:1 (1979), 49–52 | MR