On the theory of models for intuitionistic logic
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 223-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model approach is developed for intuitionistic and classical theories in the language of the simple theory of types. A weak form of completeness theorem is proved, of which the Henkin completeness theorem is a special case. An ultraproduct of Kripke structures is introduced, and an application of the omitting types theorem to theories with infinite rules for deduction is given. Bibliography: 14 titles.
@article{SM_1984_48_1_a13,
     author = {V. I. Stepanov},
     title = {On the theory of models for intuitionistic logic},
     journal = {Sbornik. Mathematics},
     pages = {223--235},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/}
}
TY  - JOUR
AU  - V. I. Stepanov
TI  - On the theory of models for intuitionistic logic
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 223
EP  - 235
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/
LA  - en
ID  - SM_1984_48_1_a13
ER  - 
%0 Journal Article
%A V. I. Stepanov
%T On the theory of models for intuitionistic logic
%J Sbornik. Mathematics
%D 1984
%P 223-235
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/
%G en
%F SM_1984_48_1_a13
V. I. Stepanov. On the theory of models for intuitionistic logic. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 223-235. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/

[1] Devis M., Prikladnoi nestandartnyi analiz, Mir, M., 1980 | MR

[2] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[3] Kolmogorov A. N., “Zur Deutung der intuitionistichen Logik”, Math. Z., 35 (1932), 58–65 | DOI | MR | Zbl

[4] Klini S. K., Vvedenie v metamatematiku, IL, M., 1957

[5] Takeuti G., Teoriya dokazatelstv, Mir, M., 1978 | MR

[6] Shenfild Dzh., Matematicheskaya logika, Nauka, M., 1975 | MR

[7] Aczel P., “Saturated intuitionistic theories”, Contribution to mathematical logic, 1969, 1–11 | MR | Zbl

[8] Fitting M., Intuitionistic logic, model theory and forcing, NHPC, Amsterdam, 1969 | MR

[9] Gabbay D. M., “Model theory for intuitionistic logic”, Zeit. Math. Logik und Grundl. Math., 18:1 (1972), 49–54 | DOI | MR | Zbl

[10] Gabbay D. M., “Semantic proof of the Graig interpolation theorem for intuitionictic logic and extensions”, Logic Coll 69, 1971, 391–406 | DOI | MR

[11] Jones I. P., “Effectively retrectable theories and degrees of undecidabcility”, Journ. Symb. Logic, 34:4 (1969), 597–604 | DOI | MR | Zbl

[12] Smorynski C., “Application of Kripke models”, Lect. Notes Math., 344, 1973, 324–391 | MR

[13] Kripke S., “Semantical analysis of intuituinistic logic”, Formal systems and recursive functions, 1965, 82–129

[14] Tomason R. H., “On the strong semantical completeness of the intuitionistic predicate calculus”, Journ. Symb. Logic, 33 (1968), 1–7 | DOI | MR