On the theory of models for intuitionistic logic
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 223-235

Voir la notice de l'article provenant de la source Math-Net.Ru

A model approach is developed for intuitionistic and classical theories in the language of the simple theory of types. A weak form of completeness theorem is proved, of which the Henkin completeness theorem is a special case. An ultraproduct of Kripke structures is introduced, and an application of the omitting types theorem to theories with infinite rules for deduction is given. Bibliography: 14 titles.
@article{SM_1984_48_1_a13,
     author = {V. I. Stepanov},
     title = {On the theory of models for intuitionistic logic},
     journal = {Sbornik. Mathematics},
     pages = {223--235},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/}
}
TY  - JOUR
AU  - V. I. Stepanov
TI  - On the theory of models for intuitionistic logic
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 223
EP  - 235
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/
LA  - en
ID  - SM_1984_48_1_a13
ER  - 
%0 Journal Article
%A V. I. Stepanov
%T On the theory of models for intuitionistic logic
%J Sbornik. Mathematics
%D 1984
%P 223-235
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/
%G en
%F SM_1984_48_1_a13
V. I. Stepanov. On the theory of models for intuitionistic logic. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 223-235. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a13/