On a problem for integral convolution operators
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 211-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article considers convolution operators $T_k\colon L^2(R^N)\to L^2(R^N)$ of the form $T_kf(x)=\int_{R^N}k(x-y)f(y)\,dy$ which are integral operators on the whole class $L^2(R^N)$, i.e., the kernel $k(x)$ is such that $\int_{R^N}|k(x-y)f(y)|\,dy<\infty$ for almost all $x\in R^N$. An answer is obtained to the following question of Korotkov: if $T_k\colon L^2(R^N)\to L^2(R^N)$ is a convolution operator which is an integral operator on the whole of $L^2(R^N)$, does it follow that $\operatorname{mes}\{\xi\in R^N:|k^\wedge(\xi)|>\lambda\}<\infty$ for any $\lambda>0$? Here $k^\wedge(\xi)$ is the Fourier transform of $k(x)$. An example answering the question in the negative is given by the operator $T_{\mathscr K}\colon L^2(R^1)\to L^2(R^1)$ with kernel $\mathscr K(x)$ such that $\mathscr K^\wedge(\xi)=\sum\limits_{n\ne0}\operatorname{sign}n\chi_{\bigl[-\frac1{2|n|},\frac1{2|n|}\bigr]}(\xi-n),$ where $\chi_{[a,b]}$ is the characteristic function of $[a,b]$. Bibliography: 4 titles.
@article{SM_1984_48_1_a12,
     author = {V. D. Stepanov},
     title = {On a~problem for integral convolution operators},
     journal = {Sbornik. Mathematics},
     pages = {211--221},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a12/}
}
TY  - JOUR
AU  - V. D. Stepanov
TI  - On a problem for integral convolution operators
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 211
EP  - 221
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a12/
LA  - en
ID  - SM_1984_48_1_a12
ER  - 
%0 Journal Article
%A V. D. Stepanov
%T On a problem for integral convolution operators
%J Sbornik. Mathematics
%D 1984
%P 211-221
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a12/
%G en
%F SM_1984_48_1_a12
V. D. Stepanov. On a problem for integral convolution operators. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 211-221. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a12/

[1] Stepanov V. D., “O kharakteristicheskikh svoistvakh integralnykh operatorov svertki”, DAN SSSR, 260:4 (1981), 806–808 | MR | Zbl

[2] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[3] Erdeii A., Asimptoticheskie razlozheniya, GIFML, M., 1962

[4] Titchmarsh E., Vvedenie v teoriyu integralov Fure, GITTL, M., L., 1948