A mixed problem for a nonhomogeneous quasilinear hyperbolic system of equations
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 201-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized solution in the large is constructed for a mixed problem for a system of equations describing the one-dimensional motions of an ideal isothermal gas with cylindrical and spherical waves. Bibliography: 9 titles.
@article{SM_1984_48_1_a11,
     author = {V. U. Lyapidevskii},
     title = {A~mixed problem for a nonhomogeneous quasilinear hyperbolic system of equations},
     journal = {Sbornik. Mathematics},
     pages = {201--210},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a11/}
}
TY  - JOUR
AU  - V. U. Lyapidevskii
TI  - A mixed problem for a nonhomogeneous quasilinear hyperbolic system of equations
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 201
EP  - 210
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a11/
LA  - en
ID  - SM_1984_48_1_a11
ER  - 
%0 Journal Article
%A V. U. Lyapidevskii
%T A mixed problem for a nonhomogeneous quasilinear hyperbolic system of equations
%J Sbornik. Mathematics
%D 1984
%P 201-210
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a11/
%G en
%F SM_1984_48_1_a11
V. U. Lyapidevskii. A mixed problem for a nonhomogeneous quasilinear hyperbolic system of equations. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 201-210. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a11/

[1] Nishida T., “Global solution for an initial boundary value problem of a quasilinear hyperbolic system”, Proc. Japan Acad., 44:7 (1968), 642–647 | DOI | MR

[2] Glimm J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math., 18:4 (1965), 697–715 | DOI | MR | Zbl

[3] Kuznetsov H. H., Tupchiev V. A., “Ob odnom obobschenii teoremy Glimma”, DAN SSSR, 221:2 (1975), 287–290 | MR | Zbl

[4] Nishida T., Smoller J. A., “Mixed problems for nonlinear conservation laws”, J. Diff. Equat., 23 (1977), 244–269 | DOI | MR | Zbl

[5] DiPerna R. J., “Existence in the large for quasilinear hyperbolic conservation laws”, Arch. Rat. Mech. Anal., 52:3 (1973), 244–258 | DOI | MR

[6] Liu T. P., “Initial-boundary value probems for gas dynamics”, Arch. Rat. Mech. Anal., 64 (1977), 137–169 | DOI | MR

[7] DiPerna R. J., “Global existence of solutions to nonlinear hyperbolic systems of conservation laws”, J. Diff. Equat., 20:1 (1976), 187–213 | DOI | MR

[8] Lyapidevskii V. Yu., “Rasprostranenie nelineinykh vozmuschenii po pokoyaschemusya gazu s peremennoi plotnostyu”, Dinamika sploshnoi sredy, Vyp. 32, 1977, 47–73

[9] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1968 | Zbl