Analytic properties of the convolution of Siegel modular forms of genus $n$
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 193-200
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the Rankin convolution of two Siegel modular forms (of which at least one is a cusp form) extends meromorphically onto the whole complex plane. In the case of the full modular group of genus $n$, the singularities of the Rankin convolution are studied to within a finite number of points, and functional equations are obtained. By means of a Tauberian theorem, a limiting relation is obtained for the weighted sum of the squares of the Fourier coefficients of a cusp form. Bibliography: 5 titles.
@article{SM_1984_48_1_a10,
author = {V. L. Kalinin},
title = {Analytic properties of the convolution of {Siegel} modular forms of genus~$n$},
journal = {Sbornik. Mathematics},
pages = {193--200},
year = {1984},
volume = {48},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a10/}
}
V. L. Kalinin. Analytic properties of the convolution of Siegel modular forms of genus $n$. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 193-200. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a10/
[1] Rankin R. A., “Contributions to the theory of Ramanujan's function $(\mathrm{n})$ and similar arithmetrical functions. II. The order of the Fourier coefficients of the integral modular forms”, Proc. Cambridge Phil. Soc., 35:3 (1939), 357–372 | DOI | MR | Zbl
[2] Maass H., “Dirichletshe Reihen und Modulformen zweiten Grades”, Acta arithmetica, 24 (1973), 225–238 | MR | Zbl
[3] Kalinin V. L., “Ryady Eizenshteina na simplekticheskoi gruppe”, Matem. sb., 103 (145) (1977), 519–549 | MR | Zbl
[4] Andrianov A. N., Kalinin V. L., “Analiticheskie svoistva standartnykh dzeta-funktsii”, Matem. sb., 106 (148) (1978), 323–339 | MR | Zbl
[5] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR