Asymptotic expansion of solutions of a system of elasticity theory in perforated domains
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 19-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the system of elasticity theory with periodic, rapidly oscillating, piecewise continuous coefficients in a domain $\Omega^\varepsilon$, bounded by the hyperplanes $x_n=0$ and $x_n=d$, which contains cavities $G_\varepsilon$ that are periodically distributed (with period $\varepsilon$). For the solutions, periodic in $x_1,\dots,x_{n-1}$, of the system of elasticity theory in the domain $\Omega^\varepsilon\subset\mathbf R^n$ when the displacements are prescribed on the planes $x_n=0$ and $x_n=d$ and the loads on the boundary of $G_\varepsilon$ vanish, an asymptotic expansion in the powers of the parameter $\varepsilon$ is obtained, and the remainder is estimated. Such problems arise, in particular, in the study of composite materials with a periodic structure, in which every cell consists of finitely many very different materials and includes finitely many cavities, and where the dimension of the cell is characterized by a small parameter $\varepsilon$. Bibliography: 23 titles.
@article{SM_1984_48_1_a1,
     author = {O. A. Oleinik and G. A. Iosif'yan and G. P. Panasenko},
     title = {Asymptotic expansion of solutions of a~system of elasticity theory in perforated domains},
     journal = {Sbornik. Mathematics},
     pages = {19--39},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a1/}
}
TY  - JOUR
AU  - O. A. Oleinik
AU  - G. A. Iosif'yan
AU  - G. P. Panasenko
TI  - Asymptotic expansion of solutions of a system of elasticity theory in perforated domains
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 19
EP  - 39
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a1/
LA  - en
ID  - SM_1984_48_1_a1
ER  - 
%0 Journal Article
%A O. A. Oleinik
%A G. A. Iosif'yan
%A G. P. Panasenko
%T Asymptotic expansion of solutions of a system of elasticity theory in perforated domains
%J Sbornik. Mathematics
%D 1984
%P 19-39
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a1/
%G en
%F SM_1984_48_1_a1
O. A. Oleinik; G. A. Iosif'yan; G. P. Panasenko. Asymptotic expansion of solutions of a system of elasticity theory in perforated domains. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 19-39. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a1/

[1] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[2] Sanchez-Palencia., “Non-homogeneous media and vibration theory”, Lect. Notes in Physicas, 127, Springer-Verlag, 1980 | MR | Zbl

[3] Cioranescu D., Paulin J. S. J., “Homogenization in open sets with holes”, J. Math. Anal. Appl, 71 (1979), 590–607 | DOI | MR | Zbl

[4] Mignot F., Puel J. P., Suquent P. M., “Homogenization and bifurcation of perforated plates”, Inter. Journ. of Eng. Science, 18:2 (1980), 409–414 | DOI | MR | Zbl

[5] Duvaut G., “Comportement macroscopique d'une plaque perforee periodiquement”, Lect. Notes in Math., 594, 1976

[6] Pastukhova S. E., “Osrednenie kraevykh zadach v perforirovannykh oblastyakh”, UMN, XXXIV:4 (1979), 205–206 | MR

[7] Vanninathan M., “Homogenesation des valeurs propres dans les milieux perfores”, C. R. Acad. Sci. Paris, ser A, 287 (1978), 403–406 | MR | Zbl

[8] Vanninathan M., “Homogenestion des problemes de valeurs propres dans les milieux perfores. Probleme de Dirichlei”, C. R. Acad. Sci. Paris, ser. A, 287, 823–825 | MR | Zbl

[9] Shalaev A. S., “Osrednenie reshenii i sobstvennykh znachenii kraevykh zadach dlya ellipticheskikh uravnenii v perforirovannykh oblastyakh”, UMN, XXXVII:2 (1982), 243–244

[10] Panasenko G. P., “Printsip rasschepleniya osrednennogo operatora dlya nelineinoi sistemy uravnenii v periodicheskikh i sluchainykh karkasnykh konstruktsiyakh”, DAN SSSR, 263:1 (1982), 35–40 | MR | Zbl

[11] Berdichevskii V. L., “Ob osrednenii periodicheskikh struktur”, PMM, 41:6 (1977), 993–1006 | MR

[12] Lions J. L., “Asymptotic expansions in perforated media with a periodic structure”, The Rocky Mountain Journ. of Math., 10:1 (1980), 125–140 | MR | Zbl

[13] Grigolyuk E. I., Filshtinskii L. A., Perforirovannye plastinki i obolochki, Nauka, M., 1970

[14] Iosifyan G. A., Oleinik O. A., Panasenko G. P., “Asimptoticheskoe razlozhenie resheniya sistemy teorii uprugosti s periodicheskimi bystro ostsilliruyuschimi koeffitsientami”, DAN SSSR, 266:1 (1982), 18–22 | MR

[15] Oleinik O. A., Yosifian G. A., “On the asymptotic behaviour of solutions in linear elasticity”, Archive Rat. Mech. and Anal., 78:1 (1982), 29–53 | MR | Zbl

[16] Iosifyan G. A., Oleinik O. A., “O suschestvovanii i asimptoticheskom povedenii reshenii sistemy teorii uprugosti v beskonechnoi oblasti”, UMN, XXXVII:4 (1982), 157–158 | MR

[17] Iosifyan G. A., Oleinik O. A., “Ob usloviyakh zatukhaniya i predelnom povedenii na beskonechnosti reshenii sistemy uravnenii teorii uprugosti”, DAN SSSR, 258:3 (1981), 550–553 | MR

[18] Mosolov P. P., Myasnikov V. P., “Dokazatelstvo neravenstva Korna”, DAN SSSR, 201:1 (1971), 36–39 | MR | Zbl

[19] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[20] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[21] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[22] Bakhvalov N. S., “Osrednenie uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Problemy vychislitelnoi matematiki i matematicheskoi fiziki, Nauka, M., 1972, 34–51

[23] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic analysis for periodic structures, North-Holland Publ. Comp., 1978 | MR