Methods of constructing approximate self-similar solutions of nonlinear heat equations.~III
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Math-Net.Ru
A rather general approach to the investigation of the asymptotic behavior of solutions of quasilinear parabolic heat equations
$$
\frac{\partial u}{\partial t}=\frac\partial{\partial x}\biggl(k(u)\frac{\partial u}{\partial x}\biggr);\qquad k(u)>0,\quad u>0.
$$
is proposed. The investigation is carried out by constructing so-called approximate self-similar solutions (ap.s-s.s's.) which do not satisfy the equation but to which solutions of the problems considered converge asymptotically. A system of ap.s-s.s's. which is complete in a particular sense is constructed for the case where the coefficient $k(u)$ satisfies the condition $[k(u)/k'(u)]'\to0$ as $u\to+\infty$ (for example, $k(u)=\exp(u^\lambda)$, $\lambda>0$; $k(u)=\exp(\exp u)$, etc.).
Bibliography: 4 titles.
@article{SM_1984_48_1_a0,
author = {V. A. Galaktionov and A. A. Samarskii},
title = {Methods of constructing approximate self-similar solutions of nonlinear heat {equations.~III}},
journal = {Sbornik. Mathematics},
pages = {1--18},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a0/}
}
TY - JOUR AU - V. A. Galaktionov AU - A. A. Samarskii TI - Methods of constructing approximate self-similar solutions of nonlinear heat equations.~III JO - Sbornik. Mathematics PY - 1984 SP - 1 EP - 18 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a0/ LA - en ID - SM_1984_48_1_a0 ER -
V. A. Galaktionov; A. A. Samarskii. Methods of constructing approximate self-similar solutions of nonlinear heat equations.~III. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a0/