Unitarity of the multiplicative group of an integral group ring
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 377-389

Voir la notice de l'article provenant de la source Math-Net.Ru

A homomorphism $f$ of a group $G$ into the multiplicative group of the ring of integers is called, in algebraic topology, an orientation homomorphism of the group $G$. If $x=\sum_{g\in G}\alpha_g g$ is an element of the integral group ring $ZG$, we will let $x^f$ denote the element $\sum_{g\in G}\alpha_g f(g)g^{-1}$. An element $x$ of the multiplicative group $U(ZG)$ is called $f$-unitary if the inverse $x^{-1}$ coincides with $x^f$ or $x^{-f}$. The collection of all $f$-unitary elements of the group $U(ZG)$ form a subgroup $U_f(ZG)$. If $U_f(ZG)=U(ZG)$, the group $U(ZG)$ is said to be $f$-unitary. Our study of the group $~U_f(ZG)$ is motivated by its appearance in algebraic topology, and was suggested by S. P. Novikov. The main result of this article consists of necessary conditions, given in terms of the kernel $\operatorname{Ker}f$ and an element $b$ such that $G=\langle\operatorname{Ker}f,b\rangle$, for the group $U(ZG)$ to be $f$-unitary. We also consider to what extent these conditions are sufficient. Bibliography: 3 titles.
@article{SM_1984_47_2_a6,
     author = {A. A. Bovdi},
     title = {Unitarity of the multiplicative group of an integral group ring},
     journal = {Sbornik. Mathematics},
     pages = {377--389},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a6/}
}
TY  - JOUR
AU  - A. A. Bovdi
TI  - Unitarity of the multiplicative group of an integral group ring
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 377
EP  - 389
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_2_a6/
LA  - en
ID  - SM_1984_47_2_a6
ER  - 
%0 Journal Article
%A A. A. Bovdi
%T Unitarity of the multiplicative group of an integral group ring
%J Sbornik. Mathematics
%D 1984
%P 377-389
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_47_2_a6/
%G en
%F SM_1984_47_2_a6
A. A. Bovdi. Unitarity of the multiplicative group of an integral group ring. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 377-389. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a6/