Unitarity of the multiplicative group of an integral group ring
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 377-389
Cet article a éte moissonné depuis la source Math-Net.Ru
A homomorphism $f$ of a group $G$ into the multiplicative group of the ring of integers is called, in algebraic topology, an orientation homomorphism of the group $G$. If $x=\sum_{g\in G}\alpha_g g$ is an element of the integral group ring $ZG$, we will let $x^f$ denote the element $\sum_{g\in G}\alpha_g f(g)g^{-1}$. An element $x$ of the multiplicative group $U(ZG)$ is called $f$-unitary if the inverse $x^{-1}$ coincides with $x^f$ or $x^{-f}$. The collection of all $f$-unitary elements of the group $U(ZG)$ form a subgroup $U_f(ZG)$. If $U_f(ZG)=U(ZG)$, the group $U(ZG)$ is said to be $f$-unitary. Our study of the group $~U_f(ZG)$ is motivated by its appearance in algebraic topology, and was suggested by S. P. Novikov. The main result of this article consists of necessary conditions, given in terms of the kernel $\operatorname{Ker}f$ and an element $b$ such that $G=\langle\operatorname{Ker}f,b\rangle$, for the group $U(ZG)$ to be $f$-unitary. We also consider to what extent these conditions are sufficient. Bibliography: 3 titles.
@article{SM_1984_47_2_a6,
author = {A. A. Bovdi},
title = {Unitarity of the multiplicative group of an integral group ring},
journal = {Sbornik. Mathematics},
pages = {377--389},
year = {1984},
volume = {47},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a6/}
}
A. A. Bovdi. Unitarity of the multiplicative group of an integral group ring. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 377-389. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a6/
[1] Novikov S. P., “Algebraicheskoe postroenie i svoistva ermitovykh analogov $K$-teorii nad koltsami s involyutsiei s tochki zreniya gamiltonova formalizma. Nekotorye primeneniya k differentsialnoi topologii i teorii kharakteristicheskikh klassov, II”, Izv. AN SSSR, ser. matem., 34:3 (1970), 475–500 | Zbl
[2] Higman G., “The units of group rings”, Proc. London Math. Soc., 46 (1940), 231–248 | DOI | MR | Zbl
[3] Bovdi A. A., “O stroenii tselochislennogo gruppovogo koltsa s trivialnymi elementami konechnogo poryadka”, Sib. matem. zh., 21:4 (1980), 28–37 | MR | Zbl