Homotopy properties of the general linear group of the Hilbert module $l_2(A)$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 365-376
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper proves that the groups $\pi_k(GL^*(l_2(A)))$ are trivial for all natural numbers $k$, where $A$ is an arbitrary $C^*$-algebra.
Bibliography: 2 titles.
			
            
            
            
          
        
      @article{SM_1984_47_2_a5,
     author = {V. A. Kasimov},
     title = {Homotopy properties of the general linear group of the {Hilbert} module $l_2(A)$},
     journal = {Sbornik. Mathematics},
     pages = {365--376},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a5/}
}
                      
                      
                    V. A. Kasimov. Homotopy properties of the general linear group of the Hilbert module $l_2(A)$. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 365-376. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a5/
