Components of topological foliations
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 329-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is proved that a topological foliation of codimension one on a three-dimensional sphere must have a compact leaf. Figures: 3. Bibliography: 12 titles.
@article{SM_1984_47_2_a2,
     author = {V. V. Solodov},
     title = {Components of topological foliations},
     journal = {Sbornik. Mathematics},
     pages = {329--343},
     year = {1984},
     volume = {47},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a2/}
}
TY  - JOUR
AU  - V. V. Solodov
TI  - Components of topological foliations
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 329
EP  - 343
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_2_a2/
LA  - en
ID  - SM_1984_47_2_a2
ER  - 
%0 Journal Article
%A V. V. Solodov
%T Components of topological foliations
%J Sbornik. Mathematics
%D 1984
%P 329-343
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_47_2_a2/
%G en
%F SM_1984_47_2_a2
V. V. Solodov. Components of topological foliations. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 329-343. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a2/

[1] Novikov S. P., “Topologiya sloenii”, Trudy MMO, 14 (1965), 248–279 | MR

[2] Solodov V. V., “O sloeniyakh na mnogoobraziyakh so spetsialnoi fundamentalnoi gruppoi”, UMN, 36:3 (1981), 225–226 | MR | Zbl

[3] Tamura I., Topologiya sloenii, Mir, M., 1979 | MR | Zbl

[4] Differential topology, foliations and Gelfand–Fuks Cohomology, v. 652, Lect. Notes. Math., Springer-Verlag, 1978 | MR

[5] Haefliger A., “Variétés feuilletés”, Ann. Scuola Norm. Sup. Pisa, 3, 16 (1962), 367–379 | MR

[6] Haefliger A., “Fenilletages sur les variétés ouvertes”, Topology, 9 (1970), 183–194 | DOI | MR | Zbl

[7] Miller M. P., “Sur les composents de Novikov des fenilletages”, Topology, 19:2 (1980), 199–202 | DOI | MR

[8] Plante J. F., “Foliations with measure preserving holonomy”, Ann. of Math., 102:2 (1975), 327–361 | DOI | MR | Zbl

[9] Reeb G., Variétés feuilletés, Hermann, Paris, 1952 | Zbl

[10] Rozenberg H., Roussarie R., “Reeb foliations”, Ann. of Math., 91 (1970), 1–24 | DOI | MR

[11] Schweitzer P. A., “Counterexample to the Seifert conjecture and opening leaves of foliations”, Ann. of Math., 100:2 (1974), 386–400 | DOI | MR | Zbl

[12] Schweitzer P. A., “Compact leaves of foliations”, Proc. Int. Congr. Math., V. 1, S. I, Vancouver, 1974, 543–546 | MR