On~a problem of Hardy-Littlewood
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 557-577

Voir la notice de l'article provenant de la source Math-Net.Ru

This work gives an estimate for the quasinorm of the $k$th derivative of a function in the Hardy space $H^p$, $0$, using a modulus of continuity of order $k$, specially introduced for $H^p$. Also considered are applications of the results to the problem of imbedding of Hardy classes and the theory of approximation. Bibliography: 26 titles.
@article{SM_1984_47_2_a16,
     author = {\`E. A. Storozhenko},
     title = {On~a problem of {Hardy-Littlewood}},
     journal = {Sbornik. Mathematics},
     pages = {557--577},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a16/}
}
TY  - JOUR
AU  - È. A. Storozhenko
TI  - On~a problem of Hardy-Littlewood
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 557
EP  - 577
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_2_a16/
LA  - en
ID  - SM_1984_47_2_a16
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%T On~a problem of Hardy-Littlewood
%J Sbornik. Mathematics
%D 1984
%P 557-577
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_47_2_a16/
%G en
%F SM_1984_47_2_a16
È. A. Storozhenko. On~a problem of Hardy-Littlewood. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 557-577. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a16/