Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 513-526 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that every irreducible unitary representation of a locally compact separable group with nontrivial first cohomology is unseparable from the identity representation in the space of irreducible unitary representations. For compactly generated groups the statement can be sharpened: a nontrivial cocycle in such a representation is in a certain sense the limit of trivial cocycles in irreducible representations. A survey is given of the connections between the notions indicated in the title. Bibliography: 17 titles.
@article{SM_1984_47_2_a13,
     author = {A. M. Vershik and S. I. Karpushev},
     title = {Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions},
     journal = {Sbornik. Mathematics},
     pages = {513--526},
     year = {1984},
     volume = {47},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a13/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - S. I. Karpushev
TI  - Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 513
EP  - 526
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_2_a13/
LA  - en
ID  - SM_1984_47_2_a13
ER  - 
%0 Journal Article
%A A. M. Vershik
%A S. I. Karpushev
%T Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions
%J Sbornik. Mathematics
%D 1984
%P 513-526
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_47_2_a13/
%G en
%F SM_1984_47_2_a13
A. M. Vershik; S. I. Karpushev. Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 513-526. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a13/

[1] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya gruppy $SL(2,R)$, gde $R$ – koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR

[2] Vershik A. M., Gelfand I. M., Graev M. I., “Neprivodimye predstavleniya gruppy $G^x$ i kogomologii”, Funkts. analiz, 8:2 (1974), 67–69 | MR | Zbl

[3] Araki H., “Factorisable representation of current algebra”, Publ. Res. Inst. Sci. Kyoto Univ., 5 (1970), 361–422 | DOI | MR | Zbl

[4] Delorme P., “1-cohomologie des representation unitaires irreductibles des groupes de Lie semi-simple complexes”, Lect. Notes in Math., 739 (1980)

[5] Kazhdan D. A., “O svyazi dualnogo prostranstva gruppy so stroeniem ee zamknutykh podgrupp”, Funkts. analiz, 1:1 (1967), 71–74 | Zbl

[6] Sullivan D., “For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesque mesurable subsets”, Bull. Am. Math. Soc., 4:1 (1981), 121–123 | DOI | MR | Zbl

[7] Margulis G., “Some remarks on invariant means”, Monatsh. Mat., 90:3 (1980), 233–236 | DOI | MR | Zbl

[8] Connes A., “A ${\rm II}_1$ factor with countable fundamental group”, J. Operator Theory, 4:1 (1980), 151–153 | MR | Zbl

[9] Wang S. P., “On the first cohomology group of discrete groups with property (T)”, Proc. of Am. Math. Soc., 42 (1974), 621–624 | DOI | MR | Zbl

[10] Guichardet A., “Cohomologie des groups localement compactes et produits tensoriel continues de representations”, Journ. Mult. Anal., 6 (1976), 138–158 | DOI | MR | Zbl

[11] Guichardet A., “Cohomologie des Groupes topologiques et des algebres de Lie”, Textes Math., n. 2, Paris, 1980 | MR

[12] Linnik Yu. V., Ostrovskii I. V., Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972 | MR

[13] Vershik A. M., “Geometricheskaya teoriya sostoyanii, granitsa fon Neimana i dvoistvennost v $C^*$-algebrakh”, Zapiski nauch. seminarov LOMI, 29 (1972), 147–154 | Zbl

[14] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[15] Gangolli R., “Positive definite kernals on homogenous spaces and certain stochastic processes related to Levy's Brownian motion on several parametres”, Annales IHES, III:2 (1967)

[16] Veil A., Integrirovanie na lokalno kompaktnykh gruppakh, IL, M., 1950

[17] Felps R., Lektsii o teoremakh Shoke, Nauka, M., 1968