Asymptotic normality in a scheme of finitely dependent distribution of particles in cells
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 499-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scheme of finitely dependent (and, generally speaking, nonstationary) distribution of particles in a countable collection of cells is considered. Sufficient conditions are given for asymptotic normality of the random variables $\mu_r$ (the number of cells containing exactly $r$ particles each), $\mu$ (the number of occupied cells), and $\xi_r$ (the number of $r$-fold repetitions). For $\mu_r$ these conditions correspond to the “left intermediate domain of variation of the parameters”, while for $\xi_r$ they include also the “central domain”. The method of moments is used in the proof. Bibliography: 6 titles.
@article{SM_1984_47_2_a12,
     author = {V. G. Mikhailov},
     title = {Asymptotic normality in a scheme of finitely dependent distribution of particles in cells},
     journal = {Sbornik. Mathematics},
     pages = {499--512},
     year = {1984},
     volume = {47},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a12/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Asymptotic normality in a scheme of finitely dependent distribution of particles in cells
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 499
EP  - 512
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_2_a12/
LA  - en
ID  - SM_1984_47_2_a12
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Asymptotic normality in a scheme of finitely dependent distribution of particles in cells
%J Sbornik. Mathematics
%D 1984
%P 499-512
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_47_2_a12/
%G en
%F SM_1984_47_2_a12
V. G. Mikhailov. Asymptotic normality in a scheme of finitely dependent distribution of particles in cells. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 499-512. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a12/

[1] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976 | MR | Zbl

[2] Zubkov A. M., Mikhailov V. G., “O povtoreniyakh $s$-tsepochek v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatnostei, XXIV:2 (1979), 267–279 | MR

[3] Mikhailov V. G., “Tsentralnaya predelnaya teorema dlya skhemy nezavisimogo razmescheniya chastits po yacheikam”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 157 (1981), 138–152 | MR

[4] Zubkov A. M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem .sb., 109 (151) (1979), 491–532 | MR | Zbl

[5] Mikhailov V. G., “Otsenka skorosti skhodimosti k raspredeleniyu Puassona pri razmeschenii chastits komplektami”, Teoriya veroyatnostei, XXII:3 (1977), 566–574

[6] Sevastyanov B. A., “Predelnye teoremy v odnoi skheme razmescheniya chastits po yacheikam”, Teoriya veroyatnostei, XI:4 (1966), 696–700