On the existence of a solution in a problem of controlling a counting process
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 425-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An existence theorem is proved in the control problem $\mathbf E^u\xi\to\max$, where $\xi$ is a bounded functional of the sample functions of a counting process $x=(x_t)_{t\geqslant0}$ with intensity $\lambda^u=\lambda(x,t,u(x,t))$. It is assumed that $\xi$ satisfies a certain condition of weak dependence on the “tail” of the sample function. The proof is based on compactness considerations and makes essential use of a description of the extreme points of the set of admissible local densities. The Appendix gives a description of the set of extreme points for the family of distribution densities of diffusion-type processes relative to Wiener measure. Bibliography: 17 titles.
@article{SM_1984_47_2_a10,
     author = {Yu. M. Kabanov},
     title = {On~the existence of a solution in a problem of controlling a~counting process},
     journal = {Sbornik. Mathematics},
     pages = {425--438},
     year = {1984},
     volume = {47},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a10/}
}
TY  - JOUR
AU  - Yu. M. Kabanov
TI  - On the existence of a solution in a problem of controlling a counting process
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 425
EP  - 438
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_2_a10/
LA  - en
ID  - SM_1984_47_2_a10
ER  - 
%0 Journal Article
%A Yu. M. Kabanov
%T On the existence of a solution in a problem of controlling a counting process
%J Sbornik. Mathematics
%D 1984
%P 425-438
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_47_2_a10/
%G en
%F SM_1984_47_2_a10
Yu. M. Kabanov. On the existence of a solution in a problem of controlling a counting process. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 425-438. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a10/

[1] Beneš V. E., “Existence of optimal stochastic control laws”, SIAM J. Control., 9:3 (1971), 446–475 | DOI | MR

[2] Kabanov Yu. M., Liptser R. Sh., Shiryaev A. N., “Absolyutnaya nepreryvnost i singulyarnost lokalno absolyutno nepreryvnykh veroyatnostnykh raspredelenii. I, II”, Matem. sb., 107 (149) (1978), 364–415 ; 108 (150) (1979), 32–61 | MR | Zbl | MR | Zbl

[3] Davis M. H. A., “On the existence of optimal policies in stochastic control”, SIAM J. Control, 11:4 (1973), 587–594 | DOI | MR | Zbl

[4] Wan C. B., Davis M. H. A., “Existence of optimal controls for stochastic jump processes”, SIAM J. Control and Optimization, 11:4 (1979), 511–524 | DOI | MR

[5] Brémaud P., Point processes and queques martingale dynamics, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | MR | Zbl

[6] Brémaud P., Jacod J., “Processus ponctuels et martingales: résultats récents sur la modelisation et le filtrage”, Adv. Appl. Probab., 9:2 (1977), 362–416 | DOI | MR | Zbl

[7] Lipcer R. S., Shiryaev A. N., Statistics of random processes, V. 2, Springer-Verlag, Berlin–Heidelberg–New York, 1978

[8] Jacod J., “Multivariate point processes: predictable projection, Radon–Nikodym derivatives, representation of martingales”, Z. W.-theorie, 31:3 (1975), 235–253 | MR | Zbl

[9] Kabanov Yu. M., Liptser R. Sh., Shiryaev A. N., “Martingalnye metody v teorii tochechnykh protsessov”, Trudy shkoly–seminara po teorii sluchainykh protsessov, ch. II (Druskininkai, 25-30 noyabrya 1974 g.), Vilnyus, 1975, 269–354 | MR

[10] Jacod J., Calcul stochastique et problèmes de martingales, v. 714, Lect. Notes Math., Springer-Verlag, 1979 | MR | Zbl

[11] Shefer X., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[12] Gelfand I. M., Vilenkin N. Ya., Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, M., 1961 | MR

[13] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[14] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[15] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973

[16] Dellasheri K., Emkosti i sluchainye protsessy, Mir, M., 1975 | MR

[17] Wagner P. N., “Integral of convex-hull-valued function”, J. Math. Anal. Appl., 50 (1975), 548–559 | DOI | MR | Zbl