Asymptotics of solutions of some elliptic equations in unbounded domains
Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 295-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers a boundary value problem for the equation $Lu\equiv((-1)^m P_{2m}(D_x,D_y)+D_y)u=f(x,y)$ in some conical domains $\Omega$, where $x\in\mathbf R^{n-1}$, $y\in\mathbf R^1$, $P_{2m}$ is a homogeneous polynomial of degree $2m$ with real coefficients, and $P_{2m}(\xi,\eta)\geqslant\mu(|\xi|^{2m}+\eta^{2m})$. An essential restriction on the domain is the following condition: the boundary contains no rays parallel to the $y$-axis. The first part of the paper studies, for a wide class of domains $\Omega$, the asymptotics of a fundamental solution and the solution of a boundary value problem subject to the condition that the right-hand side and the boundary data tend rapidly to zero at infinity. In § 3, for a specific domain $\Omega$ and $n=2$, a more involved case is examined, in which the right-hand side and the boundary data are unbounded. Bibliography: 13 titles.
@article{SM_1984_47_2_a0,
     author = {A. M. Il'in and E. F. Lelikova},
     title = {Asymptotics of solutions of some elliptic equations in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {295--313},
     year = {1984},
     volume = {47},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_2_a0/}
}
TY  - JOUR
AU  - A. M. Il'in
AU  - E. F. Lelikova
TI  - Asymptotics of solutions of some elliptic equations in unbounded domains
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 295
EP  - 313
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_2_a0/
LA  - en
ID  - SM_1984_47_2_a0
ER  - 
%0 Journal Article
%A A. M. Il'in
%A E. F. Lelikova
%T Asymptotics of solutions of some elliptic equations in unbounded domains
%J Sbornik. Mathematics
%D 1984
%P 295-313
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_47_2_a0/
%G en
%F SM_1984_47_2_a0
A. M. Il'in; E. F. Lelikova. Asymptotics of solutions of some elliptic equations in unbounded domains. Sbornik. Mathematics, Tome 47 (1984) no. 2, pp. 295-313. http://geodesic.mathdoc.fr/item/SM_1984_47_2_a0/

[1] Lelikova E. F., “Asimptotika resheniya ellipticheskogo uravneniya s malym parametrom v sluchae kusochno-gladkikh granichnykh dannykh”, Differentsialnye uravneniya s malym parametrom, Sverdlovsk, 1980, 44–65 | MR | Zbl

[2] Lelikova E. F., “Asimptotika resheniya ellipticheskogo uravneniya s malym parametrom v okrestnosti konicheskoi tochki granitsy”, Metod soglasovaniya asimptoticheskikh razlozhenii v zadachakh s singulyarnymi vozmuscheniyami, Ufa, 1980, 82–95

[3] Vainberg B. R., “Ob ellipticheskikh zadachakh v neogranichennykh oblastyakh”, Matem. sb., 75 (117) (1968), 454–480 | MR | Zbl

[4] Oleinik O. A., Radkevich E. V., “Analitichnost i teoremy tipa Liuvillya i Fragmena–Lindelëfa dlya obschikh ellipticheskikh sistem differentsialnykh uravnenii”, Matem. sb., 95 (137) (1974), 130–145 | MR | Zbl

[5] Bagirov L. A., “Apriornye otsenki, teoremy suschestvovaniya i povedenie na beskonechnosti reshenii kvaziellipticheskikh uravnenii v $\mathbf R^n$”, Matem. sb., 110 (152) (1977), 475–492 | MR

[6] Bagirov L. A., Kondratev V. A., “Ob odnom klasse ellipticheskikh uravnenii v $\mathbf R^n$. Differentsialnye uravneniya s chastnymi proizvodnymi”, Trudy seminara S. L. Soboleva, no. 2, Novosibirsk, 1978, 5–16 | MR | Zbl

[7] Oleinik O. A., Iosifyan G. A., “Printsip Sen-Venana v ploskoi teorii uprugosti i kraevye zadachi dlya bigarmonicheskogo uravneniya v neogranichennykh oblastyakh”, Sib. matem. zh., 19:5 (1978), 1154–1165 | MR | Zbl

[8] Tavkhelidze I. N., “O resheniyakh poligarmonicheskikh uravnenii s granichnymi usloviyami Dirikhle”, DAN SSSR, 247 (1979), 292–296 | MR | Zbl

[9] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112 (154) (1980), 588–610 | MR | Zbl

[10] Kheding Dzh., Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965

[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, M., 1971 | MR

[12] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[13] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968