Rational approximation and pluripolar sets
Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 91-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result in the article is Theorem. Let $S\subset\mathbf C^n$ be a closed set such that $0\notin S$ and $\mathbf C^n\setminus S$ is a pseudoconvex domain. If for almost every complex line $l$ passing through $0$ the intersection $l\cap S$ is polar in $l$, then $S$ is a pluripolar set in $\mathbf C^n$. This theorem is then applied to the analysis of sets of singularities of holomorphic functions which are rapidly approximated by rational functions. Bibliography: 21 titles.
@article{SM_1984_47_1_a5,
     author = {A. S. Sadullaev},
     title = {Rational approximation and pluripolar sets},
     journal = {Sbornik. Mathematics},
     pages = {91--113},
     year = {1984},
     volume = {47},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/}
}
TY  - JOUR
AU  - A. S. Sadullaev
TI  - Rational approximation and pluripolar sets
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 91
EP  - 113
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/
LA  - en
ID  - SM_1984_47_1_a5
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%T Rational approximation and pluripolar sets
%J Sbornik. Mathematics
%D 1984
%P 91-113
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/
%G en
%F SM_1984_47_1_a5
A. S. Sadullaev. Rational approximation and pluripolar sets. Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 91-113. http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/

[1] Gonchar A. A., “Lokalnoe uslovie odnoznachnosti analiticheskikh funktsii”, Matem. sb., 89 (131) (1972), 148–164 | Zbl

[2] Gonchar A. A., “O skhodimosti approksimatsii Pade”, Matem. sb., 92 (134) (1973), 152–164 | Zbl

[3] Gonchar A. A., “Lokalnoe uslovie odnoznachnosti analiticheskikh funktsii neskolkikh peremennykh”, Matem. sb., 93 (135) (1974), 296–313 | Zbl

[4] Chirka E. M., “Razlozhenie v ryady i skorost ratsionalnykh priblizhenii dlya golomorfnykh funktsii s analiticheskimi osobennostyami”, Matem. sb., 93 (135) (1974), 314–324 | Zbl

[5] Sadullaev A., “Granichnaya teorema edinstvennosti v $\mathbf C^n$”, Matem. sb., 101 (143) (1976), 568–583 | MR | Zbl

[6] Bedford E., Taylor B. A., “The Dirichlet problem for a complex Monge–Ampere equation”, Invent Math., 37 (1976), 1–44 | DOI | MR | Zbl

[7] Sadullaev A., “Plyurisubgarmonicheskie mery i emkost na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[8] Sadullaev A., “Operator $(dd_cu)^n$ i emkosti kondensatorov”, DAN SSSR, 251:1 (1980), 44–47 | MR | Zbl

[9] Cartan H., “Theorie du potentiel newtonien energie, capacite, suites de potentiels”, Bull. Soc. Math. France, 73 (1945), 74–106 | MR | Zbl

[10] Chern S. S., Levin H. I., Nirenberg L., “Intrinsic norms on a complex manifold”, In Global analysis Univ. of Tokyo Press, 1969, 119–139 | MR | Zbl

[11] Lelong P., “Fonctions plurisousharmoniques et fonctions analytiques de variable reeles”, Ann. Inst. Fourier, 11 (1961), 516–562 | MR

[12] Lelong P., “Fonctions entieres ($n$ variables) et fonctions plurisousharmoniques de type exponentiel. Applications a l'analyse fonctionnelle”, Sovremennye problemy teorii analiticheskikh funktsii, Nauka, M., 1966, 188–209 | MR

[13] Bedford E., “Envelopes of continuous, plurisubharmonic functions”, Math. Ann., 251:2 (1980), 175–183 | DOI | MR | Zbl

[14] Sadullaev A., “Defektnye divizory v smysle Valirona”, Matem. sb., 108 (150) (1979), 567–580 | MR | Zbl

[15] Choquet G., “Theory of capacities”, Ann. Inst. Four., 5 (1955), 131–295 | MR

[16] Bremermann H. J., “Note on plurisubharmonic and Hartogs functions”, Proc. Amer. Math. Soc., 7 (1956), 771–775 | DOI | MR | Zbl

[17] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1976 | MR

[18] Lelong P., “Ensambles singularies impropres des functions plurisousharmoniques”, Journ. Math. Pures et Appl., 36 (1957), 263–303 | MR | Zbl

[19] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[20] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[21] Mattila P., “Integralgeometric properties of capacities”, Trans. of the Amer. Math. Soc., 266:2 (1981), 539–554 | DOI | MR | Zbl