Rational approximation and pluripolar sets
Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 91-113

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result in the article is Theorem. Let $S\subset\mathbf C^n$ be a closed set such that $0\notin S$ and $\mathbf C^n\setminus S$ is a pseudoconvex domain. If for almost every complex line $l$ passing through $0$ the intersection $l\cap S$ is polar in $l$, then $S$ is a pluripolar set in $\mathbf C^n$. This theorem is then applied to the analysis of sets of singularities of holomorphic functions which are rapidly approximated by rational functions. Bibliography: 21 titles.
@article{SM_1984_47_1_a5,
     author = {A. S. Sadullaev},
     title = {Rational approximation and pluripolar sets},
     journal = {Sbornik. Mathematics},
     pages = {91--113},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/}
}
TY  - JOUR
AU  - A. S. Sadullaev
TI  - Rational approximation and pluripolar sets
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 91
EP  - 113
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/
LA  - en
ID  - SM_1984_47_1_a5
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%T Rational approximation and pluripolar sets
%J Sbornik. Mathematics
%D 1984
%P 91-113
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/
%G en
%F SM_1984_47_1_a5
A. S. Sadullaev. Rational approximation and pluripolar sets. Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 91-113. http://geodesic.mathdoc.fr/item/SM_1984_47_1_a5/