The action of modular operators on the Fourier--Jacobi coefficients of modular forms
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 237-268
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author studies the imbedding of the Hecke $p$-ring $L_p^{n+1}$ of the modular group $\mathrm{Sp}_{n+1}(\mathbf{Z})$ of genus $n+1$ in the Hecke ring $L_p^{n,1}$ of the group $\Gamma_{n,1}$ given by
$$
\Gamma_{n,1}=\left\{\begin{pmatrix}
A0*\\
****\\
C0*\\
000*
\end{pmatrix}\in\mathrm{Sp}_{n+1}(\mathbf{Z})\right\}.
$$
It is proved that the Hecke polynomial $Q_{n,1}^{(n+1)}(z)$ of $L_p^{n+1}$ splits over $L_p^{n,1}$, and the coefficients of the factors can be written explicitly in terms of the coefficients of the Hecke polynomial $Q^{(n)}(z)$ of genus $n$ and “negative” powers of a particular element $\Lambda$ of $L_p^{n,1}$. The "$-1$ power" of $\Lambda$ is computed and a formula for $\Lambda^{-2}$ is presented. The results that are obtained permit one to describe a large class of power series constructed from the Fourier–Jacobi coefficients by means of eigenfunctions with denominators depending only on the eigenvalues.
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_1984_47_1_a13,
     author = {V. A. Gritsenko},
     title = {The action of modular operators on the {Fourier--Jacobi} coefficients of modular forms},
     journal = {Sbornik. Mathematics},
     pages = {237--268},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_1_a13/}
}
                      
                      
                    V. A. Gritsenko. The action of modular operators on the Fourier--Jacobi coefficients of modular forms. Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 237-268. http://geodesic.mathdoc.fr/item/SM_1984_47_1_a13/
