Green's formula on a Hilbert space
Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 215-222

Voir la notice de l'article provenant de la source Math-Net.Ru

The first Green's formula for integrals on a Hilbert space is proved. Using this formula the authors establish, in particular, the following result. Theorem. A nondegenerate quadratic functional of a Wiener random process has an infinitely differentiate distribution function. Bibliography: 9 titles.
@article{SM_1984_47_1_a11,
     author = {E. I. Efimova and A. V. Uglanov},
     title = {Green's formula on a {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {215--222},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_47_1_a11/}
}
TY  - JOUR
AU  - E. I. Efimova
AU  - A. V. Uglanov
TI  - Green's formula on a Hilbert space
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 215
EP  - 222
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_47_1_a11/
LA  - en
ID  - SM_1984_47_1_a11
ER  - 
%0 Journal Article
%A E. I. Efimova
%A A. V. Uglanov
%T Green's formula on a Hilbert space
%J Sbornik. Mathematics
%D 1984
%P 215-222
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_47_1_a11/
%G en
%F SM_1984_47_1_a11
E. I. Efimova; A. V. Uglanov. Green's formula on a Hilbert space. Sbornik. Mathematics, Tome 47 (1984) no. 1, pp. 215-222. http://geodesic.mathdoc.fr/item/SM_1984_47_1_a11/