Propagation of singularities for solutions of an equation of principal type
Sbornik. Mathematics, Tome 46 (1983) no. 4, pp. 527-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_1983_46_4_a5,
     author = {Yu. V. Egorov},
     title = {Propagation of singularities for solutions of an equation of principal type},
     journal = {Sbornik. Mathematics},
     pages = {527--538},
     year = {1983},
     volume = {46},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_4_a5/}
}
TY  - JOUR
AU  - Yu. V. Egorov
TI  - Propagation of singularities for solutions of an equation of principal type
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 527
EP  - 538
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_4_a5/
LA  - en
ID  - SM_1983_46_4_a5
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%T Propagation of singularities for solutions of an equation of principal type
%J Sbornik. Mathematics
%D 1983
%P 527-538
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1983_46_4_a5/
%G en
%F SM_1983_46_4_a5
Yu. V. Egorov. Propagation of singularities for solutions of an equation of principal type. Sbornik. Mathematics, Tome 46 (1983) no. 4, pp. 527-538. http://geodesic.mathdoc.fr/item/SM_1983_46_4_a5/

[1] Andersson K. G., “Propagation of analyticity of solutions of partial differential equations with constant coefficients”, Arkiv för Mat., 81 (1970), 277–302 | MR

[2] Beals R., Fefferman Ch., “On local solvability of linear partial differential equations”, Ann. Math., 97 (1973), 482–498 | DOI | MR | Zbl

[3] Calderon A. P., Vaillancourt R., “On the boundedness of pseudo-differential operators”, J. Math. Soc. Japan, 23 (1971), 374–378 | MR | Zbl

[4] Dencker N., On the propagation of singularities for pseudo-differential operators of principal type, Thesis, Lund., 1981

[5] Duistermaat J. J., Hörmander L., “Fourier integral operators II”, Acta Math., 128 (1972), 183–269 | DOI | MR | Zbl

[6] Egorov Yu. V., “O kanonicheskikh preobrazovaniyakh psevdodifferentsialnykh operatorov”, UMN, 25:5 (1969), 235–236

[7] Egorov Yu. V., “Ob usloviyakh razreshimosti dlya differentsialnykh uravnenii s prostymi kharakteristikami”, DAN SSSR, 229:6 (1976), 1310–1312 | MR | Zbl

[8] Grushin V. V., “Rasprostranenie gladkosti reshenii differentsialnykh uravnenii glavnogo tipa”, DAN SSSR, 148:6 (1963), 1241–1244 | Zbl

[9] Hörmander L., Linear differential operators, 1, Actes Congres Intern. Math., Nice, 1970 | MR

[10] Hörmander L., “On the singularities of solutions of partial differential equations”, Comm. Pure Applied Math., 24 (1970), 329–358 | DOI | MR

[11] Hörmander L., “On the existence and the regularity of solutions of linear pseudo-differential equations”, L'Enseignement mathematique, 17:2 (1971), 99–163 | MR | Zbl

[12] Hörmander L., “Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients”, Comm. Pure Applied Math., 24 (1971), 671–704 | DOI | MR | Zbl

[13] Hörmander L., “Propagation of singularities and semi-global existence theorems for (pseudo-) differential operators of principal type”, Ann. of Math., 108 (1978), 569–609 | DOI | MR | Zbl

[14] Hörmander L., “Spectral analysis of singularities”, Seminar on singularities of solutions of linear partial differential equations, Princeton, 1979, 3–49 | MR | Zbl

[15] Nirenberg L., Treves F., “On local solvability of linear partial differential equations. Part II. Sufficient conditions”, Comm. Pure Applied Math., 23 (1970), 459–510 | DOI | MR

[16] Sato M., Regularity of hyperfunction solutions of partial differential equations, tome 2, Actes Congres Internat. Math., Nice, 1970 | MR

[17] Treves F., Existence et régularité des solutions des équations aux dérivées partielles linéaires; quelques résultats et quelques problèmes ouverts (Seminaire Goulaouic-Schwartz, Exposé No XXII, Ecole Polytechnique), Paris, 1973 | MR

[18] Egorov Yu. V., “Uravneniya glavnogo tipa. Dostatochnye vcloviya lokalnoi razreshimosti”, Matem. sb., 116:4 (1981), 575–584 | MR | Zbl