Periodic and almost periodic cosine operator functions
Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 391-402
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions are established for a well-posed Cauchy problem
\begin{equation}
\label{1}
u''(t)=Au(t),\qquad u(0)=u^0,\quad u'(0)=u^1,
\end{equation}
to have an almost periodic (periodic) solution in a Banach space. The influence of how “scattered” the spectrum $\sigma(A)$ is on almost-periodicity of a cosine operator function giving the solution of (1) is determined. Results relating to the Cauchy problem for the nonhomogeneous equation are presented.
Bibliography: 29 titles.
@article{SM_1983_46_3_a4,
author = {S. I. Piskarev},
title = {Periodic and almost periodic cosine operator functions},
journal = {Sbornik. Mathematics},
pages = {391--402},
publisher = {mathdoc},
volume = {46},
number = {3},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_46_3_a4/}
}
S. I. Piskarev. Periodic and almost periodic cosine operator functions. Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 391-402. http://geodesic.mathdoc.fr/item/SM_1983_46_3_a4/