On extension theorems in spaces of infinitely differentiable functions
Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 375-389

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions on a sequence $\{f_\omega(x)\}$ of functions sufficient for there to exist an extension in the space $$ W^\infty\{a_\alpha,p,r\}\equiv\biggl\{u(x)\in C^\infty(G),\quad\rho(u)\equiv\sum_{|\alpha|=0}^\infty a_\alpha\|D^\alpha u\|_r^p \infty\biggr\} $$ are established in the one-dimensional case $G\equiv(a,b)$ and also in the multidimensional strip $G\equiv\mathbf R^\nu\times[a, b]$. The conditions obtained reduce matters to a study of convergence of numerical series, and in a number of cases are not only sufficient but also necessary. Bibliography: 9 titles.
@article{SM_1983_46_3_a3,
     author = {G. S. Balashova},
     title = {On extension theorems in spaces of infinitely differentiable functions},
     journal = {Sbornik. Mathematics},
     pages = {375--389},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_3_a3/}
}
TY  - JOUR
AU  - G. S. Balashova
TI  - On extension theorems in spaces of infinitely differentiable functions
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 375
EP  - 389
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_3_a3/
LA  - en
ID  - SM_1983_46_3_a3
ER  - 
%0 Journal Article
%A G. S. Balashova
%T On extension theorems in spaces of infinitely differentiable functions
%J Sbornik. Mathematics
%D 1983
%P 375-389
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_46_3_a3/
%G en
%F SM_1983_46_3_a3
G. S. Balashova. On extension theorems in spaces of infinitely differentiable functions. Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 375-389. http://geodesic.mathdoc.fr/item/SM_1983_46_3_a3/