On extension theorems in spaces of infinitely differentiable functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 375-389
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions on a sequence $\{f_\omega(x)\}$ of functions sufficient for there to exist an extension in the space
$$
W^\infty\{a_\alpha,p,r\}\equiv\biggl\{u(x)\in C^\infty(G),\quad\rho(u)\equiv\sum_{|\alpha|=0}^\infty a_\alpha\|D^\alpha u\|_r^p \infty\biggr\}
$$
are established in the one-dimensional case $G\equiv(a,b)$ and also in the multidimensional strip $G\equiv\mathbf R^\nu\times[a, b]$. The conditions obtained reduce matters to a study of convergence of numerical series, and in a number of cases are not only sufficient but also necessary.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1983_46_3_a3,
     author = {G. S. Balashova},
     title = {On extension theorems in spaces of infinitely differentiable functions},
     journal = {Sbornik. Mathematics},
     pages = {375--389},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_3_a3/}
}
                      
                      
                    G. S. Balashova. On extension theorems in spaces of infinitely differentiable functions. Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 375-389. http://geodesic.mathdoc.fr/item/SM_1983_46_3_a3/
