Best methods for approximating analytic functions given with an error
Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 353-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $B$ be the class of analytic functions of modulus at most 1 in the disk $|z|<1$, and let $z_1,\dots,z_n$ be distinct points in the interval $(-1,1)$. This article takes up the problem of finding the quantity $$ r(z_0,z_1,\dots,z_n,\delta)=\inf_T\,\sup_{f \in B}\,\sup_{\|\widetilde f-\overline f\|_\infty\leqslant\delta}\vert f(z_0)-T(\widehat f)|, $$ where the infimum is over all possible methods $T\colon\mathbf R^n\to \mathbf{R}$, $\widetilde f=(\widetilde f_1,\dots,\widetilde f_n)$, $\overline f=(f(z_1),\dots,f(z_n))$. It is determined that, depending on the error $\delta$, the information about the approximate values of functions in $B$ at some of the points can turn out to be superfluous. The order of informativeness of the system $z_1,\dots,z_n$ is found, i.e., the smallest $k$ for which there exists a subsystem $z_{i_1},\dots,z_{i_k}$ such that $r(z_0,z_{i_1},\dots,z_{i_k},\delta)=r(z_0,z_1,\dots,z_n,\delta)$. A best method of approximation is constructed, and the dependence of the order of informativeness on the size of the error $\delta$ is investigated. Bibliography: 21 titles.
@article{SM_1983_46_3_a2,
     author = {K. Yu. Osipenko},
     title = {Best methods for approximating analytic functions given with an error},
     journal = {Sbornik. Mathematics},
     pages = {353--374},
     year = {1983},
     volume = {46},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_3_a2/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Best methods for approximating analytic functions given with an error
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 353
EP  - 374
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_3_a2/
LA  - en
ID  - SM_1983_46_3_a2
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Best methods for approximating analytic functions given with an error
%J Sbornik. Mathematics
%D 1983
%P 353-374
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1983_46_3_a2/
%G en
%F SM_1983_46_3_a2
K. Yu. Osipenko. Best methods for approximating analytic functions given with an error. Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 353-374. http://geodesic.mathdoc.fr/item/SM_1983_46_3_a2/

[1] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Kand. diss., MGU, M., 1965

[2] Bakhvalov N. S., “Ob optimalnosti lineinykh metodov priblizheniya operatorov na vypuklykh klassakh funktsii”, ZhVM i M. F., 11:4 (1971), 1014–1018 | Zbl

[3] Osipenko K. Yu., “Optimalnaya interpolyatsiya analiticheskikh funktsii”, Matem. zametki, 12:4 (1972), 465–476 | MR | Zbl

[4] Boyanov B. D., “Optimalnaya skorost integrirovaniya i $\varepsilon$-entropiya odnogo klassa analiticheskikh funktsii”, Matem. zametki, 14:1 (1973), 3–10

[5] Bojanov B. D., “Best quadrature formula for a certain class of analytic functions”, Zastos Mat., 14:3 (1974), 441–447 | MR | Zbl

[6] Bojanov B. D., “Optimal methods of interpolation in $W^{(r)}L_q(M;a,b)$”, DAN Bolg., 27:7 (1974), 885–888 | MR | Zbl

[7] Boyanov B. D., “Nailuchshie metody interpolirovaniya dlya nekotorykh klassov differentsiruemykh funktsii”, Matem. zametki, 17:4 (1975), 511–524 | MR | Zbl

[8] Micchelli C. A., Rivlin T. J., Winograd S., “The optimal recovery of smooth functions”, Numer. Math., 26:2 (1976), 191–200 | DOI | MR | Zbl

[9] Tikhomirov V. M., Boyanov B. D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdika. B'lg. mat. spisanie, 5:1 (1979), 83–96 | MR | Zbl

[10] Osipenko K. Yu., “Nailuchshee priblizhenie analiticheskikh funktsii po informatsii ob ikh znacheniyakh v konechnom chisle tochek”, Matem. zametki, 19:1 (1976), 29–40 | MR | Zbl

[11] Marchuk A. G., Osipenko K. Yu., “Nailuchshee priblizhenie funktsii, zadannykh s pogreshnostyu v konechnom chisle tochek”, Matem. zametki, 17:3 (1975), 359–368 | Zbl

[12] Micchelli C. A., Rivlin T. J., A survey of optimal recovery, Optimal estimation in approximation theory, Plenum press, N. Y., 1977 | MR

[13] Melkman A. A., Micchelli C. A., “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16:1 (1979), 87–105 | DOI | MR | Zbl

[14] Rivlin T. J., “A survey of recent results on optimal recovery, Polynom. and Spline Approximat”, Proc. NATO Adv. Study Inst., Calgary, Dordrecht e. a., 1978, 225–245 | MR

[15] Gabushin V. N., “Optimalnye metody vychisleniya znachenii operatora $Ux$, esli $x$ zadano s pogreshnostyu. Differentsirovanie funktsii, opredelennykh s oshibkoi”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, CXLV (1980), 63–78 | MR

[16] Subbotin Yu. N., “Ekstremalnye zadachi teorii priblizheniya funktsii pri nepolnoi informatsii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, CXLV (1980), 152–168

[17] Osipenko K. Yu., “Nailuchshie metody priblizheniya i poryadok informativnosti sistem”, Matem. sb., 111 (153) (1980), 532–556 | MR | Zbl

[18] Micchelli C. A., “Optimal estimation of smooth functions from inaccurate data”, J. Inst. Math. and Appl., 23:4 (1979), 473–495 | DOI | MR | Zbl

[19] Khavinson S. Ya., “Teoriya ekstremalnykh zadach dlya ogranichennykh analiticheskikh funktsii, udovletvoryayuschikh dopolnitelnym usloviyam vnutri oblasti”, UMN, 18:2 (110) (1963), 25–98 | MR | Zbl

[20] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR

[21] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR