Properties of solutions of some extremal problems connected with the Navier–Stokes system
Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 323-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of solutions of some control problems for a system described by the Navier–Stokes equations are studied with no restrictions on the control parameter. Necessary and sufficient conditions for an extremum are obtained, and the uniqueness and smoothness of solutions of control problems are investigated. The corresponding Euler–Lagrange equations are studied. Bibliography: 15 titles.
@article{SM_1983_46_3_a1,
     author = {A. V. Fursikov},
     title = {Properties of solutions of some extremal problems connected with the {Navier{\textendash}Stokes} system},
     journal = {Sbornik. Mathematics},
     pages = {323--351},
     year = {1983},
     volume = {46},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_3_a1/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - Properties of solutions of some extremal problems connected with the Navier–Stokes system
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 323
EP  - 351
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_3_a1/
LA  - en
ID  - SM_1983_46_3_a1
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T Properties of solutions of some extremal problems connected with the Navier–Stokes system
%J Sbornik. Mathematics
%D 1983
%P 323-351
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1983_46_3_a1/
%G en
%F SM_1983_46_3_a1
A. V. Fursikov. Properties of solutions of some extremal problems connected with the Navier–Stokes system. Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 323-351. http://geodesic.mathdoc.fr/item/SM_1983_46_3_a1/

[1] Fursikov A. V., “O nekotorykh zadachakh upravleniya i o rezultatakh, kasayuschikhsya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh sistem Nave–Stoksa i Eilera”, DAN SSSR, 252:5 (1980), 1066–1070 | MR | Zbl

[2] Fursikov A. V., “Zadachi upravleniya i teorema, kasayuschiesya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh uravnenii Nave–Stoksa i Eilera”, Matem. sb., 115 (157) (1981), 281–307 | MR

[3] Alekseev A. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, M., 1979

[4] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[5] Efimov N. V., Stechkin S. B., “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, DAN SSSR, 140:3 (1961), 522–524 | MR | Zbl

[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[7] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[8] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[9] Foias C., Temam R., “Structure of the set of stationary solutions of the Navier–Stokes equations”, Comm. Pure Auppl. Math., 30:2 (1977), 149–164 | DOI | MR | Zbl

[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[11] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 38:6 (1973), 3–66 | MR

[12] Markushevich A. I., Kratkii kurs teorii analiticheskikh funktsii, Nauka, M., 1966 | MR | Zbl

[13] Markushevich A. I., Teoriya analiticheskikh funktsii, Tom 2, Nauka, M., 1968 | Zbl

[14] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinyi uravnenii, Nauka, M., 1969 | MR

[15] Babin A. V., “Konechnomernost yadra i koyadra kvazilineinykh ellipticheskikh otobrazhenii”, Matem. sb., 93 (135) (1974), 422–450 | MR | Zbl