Methods of constructing approximate self-similar solutions of nonlinear
Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 291-321

Voir la notice de l'article provenant de la source Math-Net.Ru

A rather general approach is presented to the investigation of the asymptotic behavior of solutions to boundary value problems for quasilinear parabolic equations $$ \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\biggl(k(u)\frac{\partial u}{\partial x}\biggr) $$ with arbitrary coefficients $k(u)>0$, $u>0$, and arbitrary boundary regimes $u(t,0)=\psi(t)$ (the problem is considered in the half space $x \in(0,+\infty)$). The investigation is carried out by constructing so-called approximate self-similar solutions which do not satisfy the equation but to which the solution of the problem converges asymptotically in special norms. In this paper the case $[k(u)/k'(u)]'-1/\sigma$ as $u\to+\infty$, $\sigma=\operatorname{const}t>0$, is considered. Bibliography: 61 titles.
@article{SM_1983_46_3_a0,
     author = {V. A. Galaktionov and A. A. Samarskii},
     title = {Methods of constructing approximate self-similar solutions of nonlinear},
     journal = {Sbornik. Mathematics},
     pages = {291--321},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_3_a0/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - A. A. Samarskii
TI  - Methods of constructing approximate self-similar solutions of nonlinear
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 291
EP  - 321
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_3_a0/
LA  - en
ID  - SM_1983_46_3_a0
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A A. A. Samarskii
%T Methods of constructing approximate self-similar solutions of nonlinear
%J Sbornik. Mathematics
%D 1983
%P 291-321
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_46_3_a0/
%G en
%F SM_1983_46_3_a0
V. A. Galaktionov; A. A. Samarskii. Methods of constructing approximate self-similar solutions of nonlinear. Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 291-321. http://geodesic.mathdoc.fr/item/SM_1983_46_3_a0/