Methods of constructing approximate self-similar solutions of nonlinear
Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 291-321
Voir la notice de l'article provenant de la source Math-Net.Ru
A rather general approach is presented to the investigation of the asymptotic behavior of solutions to boundary value problems for quasilinear parabolic equations
$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\biggl(k(u)\frac{\partial u}{\partial x}\biggr)
$$
with arbitrary coefficients $k(u)>0$, $u>0$, and arbitrary boundary regimes $u(t,0)=\psi(t)$ (the problem is considered in the half space $x \in(0,+\infty)$). The investigation is carried out by constructing so-called approximate self-similar solutions which do not satisfy the equation but to which the solution of the problem converges asymptotically in special norms. In this paper the case $[k(u)/k'(u)]'-1/\sigma$ as $u\to+\infty$, $\sigma=\operatorname{const}t>0$, is considered.
Bibliography: 61 titles.
@article{SM_1983_46_3_a0,
author = {V. A. Galaktionov and A. A. Samarskii},
title = {Methods of constructing approximate self-similar solutions of nonlinear},
journal = {Sbornik. Mathematics},
pages = {291--321},
publisher = {mathdoc},
volume = {46},
number = {3},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_46_3_a0/}
}
TY - JOUR AU - V. A. Galaktionov AU - A. A. Samarskii TI - Methods of constructing approximate self-similar solutions of nonlinear JO - Sbornik. Mathematics PY - 1983 SP - 291 EP - 321 VL - 46 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_46_3_a0/ LA - en ID - SM_1983_46_3_a0 ER -
V. A. Galaktionov; A. A. Samarskii. Methods of constructing approximate self-similar solutions of nonlinear. Sbornik. Mathematics, Tome 46 (1983) no. 3, pp. 291-321. http://geodesic.mathdoc.fr/item/SM_1983_46_3_a0/