Scattering subspaces and asymptotic completeness for the time-dependent Schr\"odinger equation
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 267-283

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schrödinger equation $i\partial u/\partial t=H(t)u$ with a time-dependent Hamiltonian $H(t)=-\Delta+q(x,t)$ is considered in the space $L_2(\mathbf R^m)$. It is assumed that $q=\overline q$, $|q(x,t)|\leqslant c(1+|x|)^{-a}$, $a>2$, and $m\geqslant5$; $H_0=-\Delta$. It is shown that each solution of the Schrödinger equation which exits any compact subset of configuration space must have free asymptotics. More precisely, if for any $\rho$ there is a sequence $~t_n\to\pm\infty$ such that $\int_{|x| \rho}|u(x,t_n)|^2\,dx\to0$, then, for some $f_\pm$, $\|u(t)-\exp(-iH_0t)f_\pm\|\to 0$, $t\to\pm\infty$. This provides an effective description of the ranges of the wave operators relating the problems with the free Hamiltonian $H_0$ and the complete Hamiltonian $H(t)$. Examples show that the conditions imposed are best possible. The case of functions $q(x,t)$ periodic in $t$ is treated separately; in this case the description of the ranges of the wave operators can be given in spectral terms for $a>1$ and any $m$. More general differential operators are also considered. Bibliography: 14 titles.
@article{SM_1983_46_2_a7,
     author = {D. R. Yafaev},
     title = {Scattering subspaces and asymptotic completeness for the time-dependent {Schr\"odinger} equation},
     journal = {Sbornik. Mathematics},
     pages = {267--283},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Scattering subspaces and asymptotic completeness for the time-dependent Schr\"odinger equation
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 267
EP  - 283
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/
LA  - en
ID  - SM_1983_46_2_a7
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Scattering subspaces and asymptotic completeness for the time-dependent Schr\"odinger equation
%J Sbornik. Mathematics
%D 1983
%P 267-283
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/
%G en
%F SM_1983_46_2_a7
D. R. Yafaev. Scattering subspaces and asymptotic completeness for the time-dependent Schr\"odinger equation. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 267-283. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/