Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 267-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Schrödinger equation $i\partial u/\partial t=H(t)u$ with a time-dependent Hamiltonian $H(t)=-\Delta+q(x,t)$ is considered in the space $L_2(\mathbf R^m)$. It is assumed that $q=\overline q$, $|q(x,t)|\leqslant c(1+|x|)^{-a}$, $a>2$, and $m\geqslant5$; $H_0=-\Delta$. It is shown that each solution of the Schrödinger equation which exits any compact subset of configuration space must have free asymptotics. More precisely, if for any $\rho$ there is a sequence $~t_n\to\pm\infty$ such that $\int_{|x|< \rho}|u(x,t_n)|^2\,dx\to0$, then, for some $f_\pm$, $\|u(t)-\exp(-iH_0t)f_\pm\|\to 0$, $t\to\pm\infty$. This provides an effective description of the ranges of the wave operators relating the problems with the free Hamiltonian $H_0$ and the complete Hamiltonian $H(t)$. Examples show that the conditions imposed are best possible. The case of functions $q(x,t)$ periodic in $t$ is treated separately; in this case the description of the ranges of the wave operators can be given in spectral terms for $a>1$ and any $m$. More general differential operators are also considered. Bibliography: 14 titles.
@article{SM_1983_46_2_a7,
     author = {D. R. Yafaev},
     title = {Scattering subspaces and asymptotic completeness for the time-dependent {Schr\"odinger} equation},
     journal = {Sbornik. Mathematics},
     pages = {267--283},
     year = {1983},
     volume = {46},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 267
EP  - 283
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/
LA  - en
ID  - SM_1983_46_2_a7
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation
%J Sbornik. Mathematics
%D 1983
%P 267-283
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/
%G en
%F SM_1983_46_2_a7
D. R. Yafaev. Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 267-283. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a7/

[1] Yafaev D. R., “O narushenii unitarnosti pri rasseyanii na nestatsionarnom potentsiale”, DAN SSSR, 243:5 (1978), 1150–1153 | MR | Zbl

[2] Yafaev D. R., “Ob asimptoticheskom povedenii reshenii nestatsionarnogo uravneniya Shredingera”, Matem. sb., 111:2 (1980), 187–208 | MR | Zbl

[3] Schmidt G., “On scattering by time dependent perturbations”, Indiana Univ. Math. J., 24 (1975), 925–935 | DOI | MR | Zbl

[4] Yajima K., “Scattering theory for Schrödinger equations with potentials periodic in time”, J. Math. Soc. Japan, 29:4 (1977), 729–743 | DOI | MR | Zbl

[5] Enss V., “Asymptotic completeness for quantum mechanical potential scattering”, Commun. Math. Phys., 61 (1978), 285–291 | DOI | MR | Zbl

[6] Yafaev D. R., On the proof of Enss of asymptotic completeness in potential scattering theory, Preprinty LOMI. E-2-79, LOMI, Leningrad, 1979 | MR | Zbl

[7] Yafaev D. R., “Asimptoticheskaya polnota dlya mnogomernogo nestatsionarnogo uravneniya Shredingera”, DAN SSSR, 251:4 (1980), 812–816 | MR | Zbl

[8] Kato T., “Integration of the equation of evolution in a Banach space”, J. Math. Soc. Japan, 5 (1953), 208–234 | MR | Zbl

[9] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 2, Mir, M., 1978 | MR

[10] Yafaev D. R., “O virtualnom urovne uravneniya Shredingera”, Zap. nauchn. sem. LOMI, 51 (1975), 203–216 | Zbl

[11] Yafaev D. R., “O “sobstvennykh funktsiyakh” nestatsionarnogo uravneniya Shredingera”, Teoretich. matem. fizika, 43:2 (1980), 228–239 | MR

[12] Yafaev D. R., “Usloviya unitarnosti volnovykh operatorov pri rasseyanii na nestatsionarnom potentsiale”, Funkts. analiz, 14:4 (1980), 91–92 | MR | Zbl

[13] Howland J., “Scattering theory for hamiltonians periodic in time”, Indiana Univ. Math. J., 28:3 (1979), 471–495 | DOI | MR

[14] Korotyaev E. L., “O spektre operatora monodromii operatora Shredingera s periodicheskim po vremeni potentsialom”, Zap. nauchn. sem. LOMI, 96 (1980), 101–104 | MR