$$ L_{2k+s}u=L_{n_s}u^{(2k)}=\alpha_{n_s}u_x^{(q_{n_s}+2k)}(t,0)+ \beta_{n_s}u_x^{(q_{n_s}+2k)}(t,1)+T_{n_s}u_x^{(2k)}(t,\cdot)=0, $$ $s=1\div2p-2k$, $1\leqslant n_s\leqslant2k$, and with initial conditions $u(0,x)=u_0(x)$ and $u'_t(0,x)=u_1(x)$. Well-posedness conditions are found for this problem. Bibliography: 9 titles.
@article{SM_1983_46_2_a6,
author = {S. Ya. Yakubov},
title = {A~nonlocal boundary value problem for a class of {Petrovskii} well-posed equations},
journal = {Sbornik. Mathematics},
pages = {255--265},
year = {1983},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/}
}
S. Ya. Yakubov. A nonlocal boundary value problem for a class of Petrovskii well-posed equations. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/
[1] Sobolev S. L., “Sur le problemes mixtes pour les equations aux derivees partielles a deux variables independantes”, Calcutta Math. Soc., Com., 1958–1959, 447–484 ; Dezin A. A., Maslennikova V. N., Differentsialnye uravneniya s chastnymi proizvodnymi, M., 1970) | MR | Zbl
[2] Yakubov S. Ya., “O razreshimosti zadachi Koshi dlya evolyutsionnykh uravnenii”, DAN SSSR, 156:5 (1964), 1041–1044 | Zbl
[3] Silchenko Yu. T., Differentsialnye uravneniya v banakhovom prostranstve i parabolicheskie uravneniya v prostranstvakh gladkikh funktsii, Dis. na soiskanie uch. st. kand. fiz.-mat. nauk, VGU, Voronezh, 1978
[4] Dezin A. A., “Ob operatornykh uravneniyakh vtorogo poryadka”, Sib. matem. zh., XIX:5 (1978), 1032–1042 | MR
[5] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR
[6] Yakubov S. Ya., “O zadache Koshi dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve”, DAN SSSR, 168:4 (1966), 759–762 | Zbl
[7] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. mosk. matem. ob-va, 10 (1961), 297–350 | MR | Zbl
[8] Yakubov S. Ya., “Lineinoe abstraktnoe parabolicheskoe uravnenie”, Spetsialnye voprosy funktsionalnogo analiza i ikh primenenie k teorii differentsialnykh uravnenii i k teorii funktsii, izd-vo AN AzSSR, Baku, 1968, 164–187
[9] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl