A~nonlocal boundary value problem for a class of Petrovskii well-posed equations
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 255-265

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, the mixed problem for the entire class of Petrovskii well-posed partial differential equations has not been studied. In this paper, a certain subclass of Petrovskii well-posed equations for which it is possible to state and study mixed problems, is isolated. In the rectangle $[0,T]\times[0,1]$, consider the equation $$ D_t^2u+aD_tD_x^{2k}u+bD_x^{2p}u+\sum\limits_{\alpha\leqslant{2k-1}} a_\alpha(t,x)D_tD_x^\alpha+\sum\limits_{\alpha\leqslant{2p-1}}b_\alpha(t,x)D_x^\alpha u=f(t, x) $$ with boundary conditions $$ L_\nu u=\alpha_\nu u_x^{(q_\nu)}(t,0)+\beta_\nu u_x^{(q_\nu)}(t,1)+ T_\nu u(t,\cdot)=0, \qquad \nu=1\div2k, $$ for $p\leqslant k$, where $|\alpha_\nu|+|\beta_\nu|\ne 0$, $\nu=1\div2k$, $0\leqslant q_\nu\leqslant q_{\nu+1}$, $q_\nu$, $T_\nu$ is a continuous linear functional in $W_q^{q_\nu}(0, 1)$, $q+\infty$, and for $k$ $$ L_{2k+s}u=L_{n_s}u^{(2k)}=\alpha_{n_s}u_x^{(q_{n_s}+2k)}(t,0)+ \beta_{n_s}u_x^{(q_{n_s}+2k)}(t,1)+T_{n_s}u_x^{(2k)}(t,\cdot)=0, $$ $s=1\div2p-2k$, $1\leqslant n_s\leqslant2k$, and with initial conditions $u(0,x)=u_0(x)$ and $u'_t(0,x)=u_1(x)$. Well-posedness conditions are found for this problem. Bibliography: 9 titles.
@article{SM_1983_46_2_a6,
     author = {S. Ya. Yakubov},
     title = {A~nonlocal boundary value problem for a class of {Petrovskii} well-posed equations},
     journal = {Sbornik. Mathematics},
     pages = {255--265},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/}
}
TY  - JOUR
AU  - S. Ya. Yakubov
TI  - A~nonlocal boundary value problem for a class of Petrovskii well-posed equations
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 255
EP  - 265
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/
LA  - en
ID  - SM_1983_46_2_a6
ER  - 
%0 Journal Article
%A S. Ya. Yakubov
%T A~nonlocal boundary value problem for a class of Petrovskii well-posed equations
%J Sbornik. Mathematics
%D 1983
%P 255-265
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/
%G en
%F SM_1983_46_2_a6
S. Ya. Yakubov. A~nonlocal boundary value problem for a class of Petrovskii well-posed equations. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/