A nonlocal boundary value problem for a class of Petrovskii well-posed equations
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 255-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is well known, the mixed problem for the entire class of Petrovskii well-posed partial differential equations has not been studied. In this paper, a certain subclass of Petrovskii well-posed equations for which it is possible to state and study mixed problems, is isolated. In the rectangle $[0,T]\times[0,1]$, consider the equation $$ D_t^2u+aD_tD_x^{2k}u+bD_x^{2p}u+\sum\limits_{\alpha\leqslant{2k-1}} a_\alpha(t,x)D_tD_x^\alpha+\sum\limits_{\alpha\leqslant{2p-1}}b_\alpha(t,x)D_x^\alpha u=f(t, x) $$ with boundary conditions $$ L_\nu u=\alpha_\nu u_x^{(q_\nu)}(t,0)+\beta_\nu u_x^{(q_\nu)}(t,1)+ T_\nu u(t,\cdot)=0, \qquad \nu=1\div2k, $$ for $p\leqslant k$, where $|\alpha_\nu|+|\beta_\nu|\ne 0$, $\nu=1\div2k$, $0\leqslant q_\nu\leqslant q_{\nu+1}$, $q_\nu, $T_\nu$ is a continuous linear functional in $W_q^{q_\nu}(0, 1)$, $q<+\infty$, and for $k $$ L_{2k+s}u=L_{n_s}u^{(2k)}=\alpha_{n_s}u_x^{(q_{n_s}+2k)}(t,0)+ \beta_{n_s}u_x^{(q_{n_s}+2k)}(t,1)+T_{n_s}u_x^{(2k)}(t,\cdot)=0, $$ $s=1\div2p-2k$, $1\leqslant n_s\leqslant2k$, and with initial conditions $u(0,x)=u_0(x)$ and $u'_t(0,x)=u_1(x)$. Well-posedness conditions are found for this problem. Bibliography: 9 titles.
@article{SM_1983_46_2_a6,
     author = {S. Ya. Yakubov},
     title = {A~nonlocal boundary value problem for a class of {Petrovskii} well-posed equations},
     journal = {Sbornik. Mathematics},
     pages = {255--265},
     year = {1983},
     volume = {46},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/}
}
TY  - JOUR
AU  - S. Ya. Yakubov
TI  - A nonlocal boundary value problem for a class of Petrovskii well-posed equations
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 255
EP  - 265
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/
LA  - en
ID  - SM_1983_46_2_a6
ER  - 
%0 Journal Article
%A S. Ya. Yakubov
%T A nonlocal boundary value problem for a class of Petrovskii well-posed equations
%J Sbornik. Mathematics
%D 1983
%P 255-265
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/
%G en
%F SM_1983_46_2_a6
S. Ya. Yakubov. A nonlocal boundary value problem for a class of Petrovskii well-posed equations. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/

[1] Sobolev S. L., “Sur le problemes mixtes pour les equations aux derivees partielles a deux variables independantes”, Calcutta Math. Soc., Com., 1958–1959, 447–484 ; Dezin A. A., Maslennikova V. N., Differentsialnye uravneniya s chastnymi proizvodnymi, M., 1970) | MR | Zbl

[2] Yakubov S. Ya., “O razreshimosti zadachi Koshi dlya evolyutsionnykh uravnenii”, DAN SSSR, 156:5 (1964), 1041–1044 | Zbl

[3] Silchenko Yu. T., Differentsialnye uravneniya v banakhovom prostranstve i parabolicheskie uravneniya v prostranstvakh gladkikh funktsii, Dis. na soiskanie uch. st. kand. fiz.-mat. nauk, VGU, Voronezh, 1978

[4] Dezin A. A., “Ob operatornykh uravneniyakh vtorogo poryadka”, Sib. matem. zh., XIX:5 (1978), 1032–1042 | MR

[5] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[6] Yakubov S. Ya., “O zadache Koshi dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve”, DAN SSSR, 168:4 (1966), 759–762 | Zbl

[7] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. mosk. matem. ob-va, 10 (1961), 297–350 | MR | Zbl

[8] Yakubov S. Ya., “Lineinoe abstraktnoe parabolicheskoe uravnenie”, Spetsialnye voprosy funktsionalnogo analiza i ikh primenenie k teorii differentsialnykh uravnenii i k teorii funktsii, izd-vo AN AzSSR, Baku, 1968, 164–187

[9] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl