A~nonlocal boundary value problem for a class of Petrovskii well-posed equations
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 255-265
Voir la notice de l'article provenant de la source Math-Net.Ru
As is well known, the mixed problem for the entire class of Petrovskii well-posed partial differential equations has not been studied. In this paper, a certain subclass of Petrovskii well-posed equations for which it is possible to state and study mixed problems, is isolated. In the rectangle $[0,T]\times[0,1]$, consider the equation
$$
D_t^2u+aD_tD_x^{2k}u+bD_x^{2p}u+\sum\limits_{\alpha\leqslant{2k-1}}
a_\alpha(t,x)D_tD_x^\alpha+\sum\limits_{\alpha\leqslant{2p-1}}b_\alpha(t,x)D_x^\alpha u=f(t, x)
$$
with boundary conditions
$$
L_\nu u=\alpha_\nu u_x^{(q_\nu)}(t,0)+\beta_\nu u_x^{(q_\nu)}(t,1)+
T_\nu u(t,\cdot)=0, \qquad \nu=1\div2k,
$$
for $p\leqslant k$, where $|\alpha_\nu|+|\beta_\nu|\ne 0$, $\nu=1\div2k$, $0\leqslant q_\nu\leqslant q_{\nu+1}$, $q_\nu$, $T_\nu$ is a continuous linear functional in $W_q^{q_\nu}(0, 1)$, $q+\infty$, and for $k$
$$
L_{2k+s}u=L_{n_s}u^{(2k)}=\alpha_{n_s}u_x^{(q_{n_s}+2k)}(t,0)+
\beta_{n_s}u_x^{(q_{n_s}+2k)}(t,1)+T_{n_s}u_x^{(2k)}(t,\cdot)=0,
$$
$s=1\div2p-2k$, $1\leqslant n_s\leqslant2k$, and with initial conditions $u(0,x)=u_0(x)$ and $u'_t(0,x)=u_1(x)$.
Well-posedness conditions are found for this problem.
Bibliography: 9 titles.
@article{SM_1983_46_2_a6,
author = {S. Ya. Yakubov},
title = {A~nonlocal boundary value problem for a class of {Petrovskii} well-posed equations},
journal = {Sbornik. Mathematics},
pages = {255--265},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/}
}
S. Ya. Yakubov. A~nonlocal boundary value problem for a class of Petrovskii well-posed equations. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a6/