An analogue of St. Venant's principle for a polyharmonic equation and applications of it
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 237-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An a priori energy estimate analogous to the inequalities expressing St. Venant's principle in elasticity theory is obtained for the solution of a polyharmonic equation with the conditions of the first boundary-value problem in an $n$-dimensional domain. These estimates are used to study the behavior of the solution and its derivatives near irregular boundary points and at infinity as a consequence of the geometric properties of the boundary in a neighborhood of these points. Moreover, the estimates obtained are used to prove a uniqueness theorem for the solution of the Dirichlet problem in unbounded domains. Bibliography: 13 titles.
@article{SM_1983_46_2_a5,
     author = {I. N. Tavkhelidze},
     title = {An analogue of {St.} {Venant's} principle for a polyharmonic equation and applications of~it},
     journal = {Sbornik. Mathematics},
     pages = {237--253},
     year = {1983},
     volume = {46},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a5/}
}
TY  - JOUR
AU  - I. N. Tavkhelidze
TI  - An analogue of St. Venant's principle for a polyharmonic equation and applications of it
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 237
EP  - 253
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_2_a5/
LA  - en
ID  - SM_1983_46_2_a5
ER  - 
%0 Journal Article
%A I. N. Tavkhelidze
%T An analogue of St. Venant's principle for a polyharmonic equation and applications of it
%J Sbornik. Mathematics
%D 1983
%P 237-253
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_46_2_a5/
%G en
%F SM_1983_46_2_a5
I. N. Tavkhelidze. An analogue of St. Venant's principle for a polyharmonic equation and applications of it. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 237-253. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a5/

[1] Knowles J. K., “On Saint-Venant's prinsiple in the two dimensional linear theory of elasticiti”, Arch. Rat. Mech. and Anal., 21 (1) (1966), 1–22 | MR

[2] Oleinik O. A., Iosifyan G. A., “O printsipe Sen-Venana v ploskoi teorii uprugosti”, DAN SSSR, 239:3 (1978), 530–534 | MR

[3] Oleinik O. A., Yosifian G. A., “On singularities at the boundary point and uniquness theorems for solutions of the first boundary value problem of elasticity”, Commun. partial diff. eqs., 2 (9) (1977) | MR | Zbl

[4] Oleinik O. A., Iosifyan G. A., “Printsip Sen-Venana v ploskoi teorii uprugosti i kraevye zadachi dlya bigarmonicheskogo uravneniya v neogranichennykh oblastyakh”, Sib. matem. zh., 19:5 (1978), 1154–1165 | MR | Zbl

[5] Oleinik O. A., Iosifyan G. A., Tavkhelidze I. N., “O povedenii reshenii uravnenii ploskoi teorii uprugosti v okrestnosti neregulyarnykh tochek granitsy na beskonechnosti”, Differentsialnye i integralnye uravneniya, kraevye zadachi, izd-vo TGU, Tbilisi, 1979

[6] Tavkhelidze I. N., “O resheniyakh poligarmonicheskikh uravnenii s granichnymi usloviyami Dirikhle”, DAN SSSR, 247:2 (1979), 292–296 | MR | Zbl

[7] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo LGU, L., 1950

[9] Oleinik O. A., Lektsii po differentsialnym uravneniyam v chastnykh proizvodnykh, 1, izd-vo MGU, M., 1976

[10] Vekua I. N., “O metagarmonicheskikh funktsiyakh”, Tr. Tbilisskogo matem. in-ta, 13 (1943), 1–105 | MR

[11] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, TMM, 16 (1967), 209–292

[12] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach vblizi konicheskikh tochek”, DAN SSSR, 219 (1974), 286–289

[13] Mazya V. G., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Dirikhle vblizi izolirovannoi osobennosti granitsy”, Vestnik LGU, 1977, no. 13, 60–66