Equivalence of holomorphically induced representations of Lie groups with an Abelian normal subgroup
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 171-182
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a unitary representation of a Lie group given by a positive polarization. Suppose the group contains an Abelian normal subgroup of a suitable sort. It is then shown that if we replace the polarization by a certain new one that contains the corresponding Abelian ideal, the equivalence class of the representation is left unchanged.
Bibliography: 5 titles.
@article{SM_1983_46_2_a2,
author = {A. A. Zaitsev},
title = {Equivalence of holomorphically induced representations of {Lie} groups with an {Abelian} normal subgroup},
journal = {Sbornik. Mathematics},
pages = {171--182},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a2/}
}
TY - JOUR AU - A. A. Zaitsev TI - Equivalence of holomorphically induced representations of Lie groups with an Abelian normal subgroup JO - Sbornik. Mathematics PY - 1983 SP - 171 EP - 182 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_46_2_a2/ LA - en ID - SM_1983_46_2_a2 ER -
A. A. Zaitsev. Equivalence of holomorphically induced representations of Lie groups with an Abelian normal subgroup. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 171-182. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a2/