The existence of inner functions in the ball
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 143-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following analogue of the well-known theorem of Rudin for the polydisk is proved for the ball. Given any positive lower semicontinuous integrable function $\varphi$ on the sphere $S\subset\mathbf C^d$, there is a positive singular measure $\mu$ on $S$ such that $\mu(S)=\|\varphi\|_{L^1(S)}$, and the difference between the Poisson integrals of the function $\varphi$ and the measure $\mu$ is a pluriharmonic function (in the unit ball $B$, with $S=\partial B$). This implies immediately the existence of an inner function in $B$. A certain weakened version of the Pick–Nevanlinna theorem on interpolation of inner functions is also obtained for $B$. The results obtained are applied to the Hardy classes $H^p$ ($0) in the ball and in the polydisk. Bibliography: 17 titles.
@article{SM_1983_46_2_a0,
     author = {A. B. Aleksandrov},
     title = {The existence of inner functions in the ball},
     journal = {Sbornik. Mathematics},
     pages = {143--159},
     year = {1983},
     volume = {46},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - The existence of inner functions in the ball
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 143
EP  - 159
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_2_a0/
LA  - en
ID  - SM_1983_46_2_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T The existence of inner functions in the ball
%J Sbornik. Mathematics
%D 1983
%P 143-159
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_46_2_a0/
%G en
%F SM_1983_46_2_a0
A. B. Aleksandrov. The existence of inner functions in the ball. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 143-159. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a0/

[1] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[2] Rudin W., “The inner function problem in balls”, Zap. nauchn. sem. LOMI, 81, 1978, 278–280

[3] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, 4, VINITI, M., 1975, 13–142

[4] Tumanov A. E., “O granichnykh znacheniyakh golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, UMN, 29:4 (1974), 158–159

[5] Sibony N., Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes, Lecture Notes Math., 578, Springer-Verlag, 1977 | MR

[6] Sadullaev A., “O vnutrennikh funktsiyakh v $\mathbf{C}^n$”, Matem. zametki, 19:1 (1976), 63–66 | MR | Zbl

[7] Aleksandrov A. B., “Klassy Khardi $H^p$ pri $p1$ i poluvnutrennie funktsii”, DAN SSSR, 262:5 (1982), 1033–1036 | MR | Zbl

[8] Rudin U., Teoriya funktsii v polikruge, Mir, M., 1974 | MR | Zbl

[9] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[10] Aleksandrov A. B., Essays on non locally convex Hardy classes, Lecture Notes Math., 864, Springer-Verlag, 1981 | MR

[11] Lindenstrauss J., Tzafriri L., Classical Banach spaces, V. 1, Springer-Verlag, Berlin–Heidelberg–N.Y., 1977 | MR

[12] Forelli F., “Measures whose Poisson integrals are pluriharmonic”, Illinois J. Math., 18 (1974), 373–388 | MR | Zbl

[13] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[14] Jewell N. P., “Toeplitz operatos on the Bergman spaces and in several complex variables”, Proc. Lond. Math. Soc., 41 (1981), 193–216 | DOI | MR

[15] Mashall D., “Blaschke products generate $H^\infty$”, Bull. Amer. Math. Soc., 82 (1976), 494–496 | DOI | MR

[16] Aleksandrov A. B., “Approksimatsiya ratsionalnymi funktsiyami i analog teoremy M. Rissa o sopryazhennykh funktsiyakh dlya prostranstv $L^p$ s $p\in(0,1)$”, Matem. sb., 107(149) (1978), 3–19 | Zbl

[17] Rudin W., Function theory in the unit ball of $\mathbf{C}^n$, Springer-Verlag, N. Y.–Heidelberg–Berlin, 1980 | MR | Zbl