The existence of inner functions in the ball
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 143-159
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following analogue of the well-known theorem of Rudin for the polydisk is proved for the ball. Given any positive lower semicontinuous integrable function $\varphi$ on the sphere $S\subset\mathbf C^d$, there is a positive singular measure $\mu$ on $S$ such that $\mu(S)=\|\varphi\|_{L^1(S)}$, and the difference between the Poisson integrals of the function $\varphi$ and the measure $\mu$ is a pluriharmonic function (in the unit ball $B$, with $S=\partial B$). This implies immediately the existence of an inner function in $B$. A certain weakened version of the Pick–Nevanlinna theorem on interpolation of inner functions is also obtained for $B$.
The results obtained are applied to the Hardy classes $H^p$ ($0$) in the ball and in the polydisk.
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_1983_46_2_a0,
     author = {A. B. Aleksandrov},
     title = {The existence of inner functions in the ball},
     journal = {Sbornik. Mathematics},
     pages = {143--159},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_2_a0/}
}
                      
                      
                    A. B. Aleksandrov. The existence of inner functions in the ball. Sbornik. Mathematics, Tome 46 (1983) no. 2, pp. 143-159. http://geodesic.mathdoc.fr/item/SM_1983_46_2_a0/
