Identities in almost nilpotent Lie rings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 46 (1983) no. 1, pp. 133-142
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following Lie rings $L$ are shown to have finite bases for their identities. (i) $L$ has a finite ideal $K$ with $L/K$ nilpotent. (ii) $L$ has a nilpotent ideal $N$ of finite index with $\operatorname{ad}x$ nilpotent on $N$ for each $x\in L$. (iii) $L$ is soluble, algebraic and possesses a nilpotent ideal of finite index. Of independent interest are some other results giving characterizations of certain classes of varieties of Lie rings.
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_1983_46_1_a6,
     author = {M. V. Volkov and A. G. Gein},
     title = {Identities in almost nilpotent {Lie} rings},
     journal = {Sbornik. Mathematics},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_1_a6/}
}
                      
                      
                    M. V. Volkov; A. G. Gein. Identities in almost nilpotent Lie rings. Sbornik. Mathematics, Tome 46 (1983) no. 1, pp. 133-142. http://geodesic.mathdoc.fr/item/SM_1983_46_1_a6/
