Identities in almost nilpotent Lie rings
Sbornik. Mathematics, Tome 46 (1983) no. 1, pp. 133-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following Lie rings $L$ are shown to have finite bases for their identities. (i) $L$ has a finite ideal $K$ with $L/K$ nilpotent. (ii) $L$ has a nilpotent ideal $N$ of finite index with $\operatorname{ad}x$ nilpotent on $N$ for each $x\in L$. (iii) $L$ is soluble, algebraic and possesses a nilpotent ideal of finite index. Of independent interest are some other results giving characterizations of certain classes of varieties of Lie rings. Bibliography: 17 titles.
@article{SM_1983_46_1_a6,
     author = {M. V. Volkov and A. G. Gein},
     title = {Identities in almost nilpotent {Lie} rings},
     journal = {Sbornik. Mathematics},
     pages = {133--142},
     year = {1983},
     volume = {46},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_1_a6/}
}
TY  - JOUR
AU  - M. V. Volkov
AU  - A. G. Gein
TI  - Identities in almost nilpotent Lie rings
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 133
EP  - 142
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_1_a6/
LA  - en
ID  - SM_1983_46_1_a6
ER  - 
%0 Journal Article
%A M. V. Volkov
%A A. G. Gein
%T Identities in almost nilpotent Lie rings
%J Sbornik. Mathematics
%D 1983
%P 133-142
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1983_46_1_a6/
%G en
%F SM_1983_46_1_a6
M. V. Volkov; A. G. Gein. Identities in almost nilpotent Lie rings. Sbornik. Mathematics, Tome 46 (1983) no. 1, pp. 133-142. http://geodesic.mathdoc.fr/item/SM_1983_46_1_a6/

[1] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestvennoe sootnoshenie v konechnykh koltsakh Li”, Matem. sb., 96(138) (1975), 543–559 | Zbl

[2] Cossey J., “Laws in nilpotent-by-finite groups”, Proc. Amer. Math. Soc., 19:3 (1968), 685–688 | DOI | MR | Zbl

[3] Kruse R. L., “Identities satisfied by a finite ring”, J. Algebra, 26:2 (1973), 298–318 | DOI | MR | Zbl

[4] Vaughan-Lee M. R., “Varieties of Lie algebras”, Quart. J. Math., Oxford Ser. (2), 21:83 (1970), 297–308 | DOI | MR | Zbl

[5] Drenski V. S., “O tozhdestvakh v algebrakh Li”, Algebra i logika, 13:3 (1974), 265–290 | MR | Zbl

[6] Lvov I. V., “O mnogoobraziyakh kolets. I”, Algebra i logika, 12:3 (1973), 269–297 | MR

[7] Volkov M. V., “Struktury mnogoobrazii algebr”, Matem. sb., 109 (151) (1979), 60–79 | MR | Zbl

[8] Maltsev A. I., “Ob umnozhenii klassov algebraicheskikh sistem”, Sib. matem. zh., 8:2 (1967), 346–365

[9] Higgins P. J., “Lie rings satisfying the Engel condition”, Proc. Cambr. Philos. Soc., 50:1 (1954), 8–15 | DOI | MR | Zbl

[10] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[11] Vaughan-Lee M. R., “Some varieties of Lie algebras”, D. Phil. thesis, Oxford, 1968

[12] Barnes D. W., “Conditions for nilpotency of Lie algebras”, Math. Z., 79:4 (1962), 289–296 ; “correction”, 81:5 (1963), 416–418 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Birkgof G., Teoriya struktur, IL, M., 1952

[14] Hall Ph., “Finite-by-nilpotent groups”, Proc. Cambr. Philos. Soc., 52:6 (1956), 611–616 | DOI | MR | Zbl

[15] Artamonov V. A., “Tsepnye mnogoobraziya lineinykh algebr”, Tr. Mosk. matem. ob-va, 29 (1973), 51–78 | MR | Zbl

[16] Zaitsev M. V., “O konechnoi baziruemosti mnogoobrazii algebr Li”, Matem. sb., 106(148) (1978), 499–506

[17] Bakhturin Yu. A., Olshanskii A. Yu., “Razreshimye pochti krossovy mnogoobraziya kolets Li”, Matem. sb., 100(142) (1973), 384–399 | MR